【題目】設(shè)
,
是兩條不同的直線,
,
,
是三個(gè)不同的平面.有下列四個(gè)命題:
①若
,
,
,則
; ②若
,
,則
;
③ 若
,
,
,則
;④ 若
,
,
,則
.
其中錯(cuò)誤命題的序號(hào)是
A. ①③ B. ①④ C. ②③④ D. ②③
【答案】B
【解析】
根據(jù)平面平行的幾何特征及直線關(guān)系的定義,可判斷①錯(cuò)誤;根據(jù)線面平行的性質(zhì)定理,線面垂直的第二判定定理及面面垂直的判定定理,可得②正確;根據(jù)線面垂直的幾何特征及面面平行的判定方法,可得③正確;根據(jù)面面垂直的幾何特征,及線面垂直的幾何特征,可判斷④錯(cuò)誤.
若α∥β,mα,nβ,則m與n不相交,但可能平行也可能異面,故①錯(cuò)誤;
若m⊥α,m∥β,由線面平行的性質(zhì)定理可得:存在直線bβ,使b∥a,根據(jù)線面垂直的第二判定定理可得b⊥α,再由面面平行的判定定理得:α⊥β,故②正確;
若n⊥α,n⊥β,則α∥β,又由m⊥α,則m⊥β,故③正確;
若α⊥γ,β⊥γ,α與β可能平行也可能相交(此時(shí)兩平面交線與γ垂直),當(dāng)α∥β時(shí),若m⊥α,則m⊥β,但α與β相交時(shí),若m⊥α,則m與β一定不垂直,故④錯(cuò)誤;
故答案為:B
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某公司為鄭州園博園生產(chǎn)某特許商品,該公司年固定成本為10萬(wàn)元,每生產(chǎn)千件需另投入2 .7萬(wàn)元,設(shè)該公司年內(nèi)共生產(chǎn)該特許商品工x千件并全部銷(xiāo)售完;每千件的銷(xiāo)售收入為R(x)萬(wàn)元,
且
,
(I)寫(xiě)出年利潤(rùn)W(萬(wàn)元〉關(guān)于該特許商品x(千件)的函數(shù)解析式;
〔II〕年產(chǎn)量為多少千件時(shí),該公司在該特許商品的生產(chǎn)中所獲年利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一年級(jí)學(xué)生全部參加了體育科目的達(dá)標(biāo)測(cè)試,現(xiàn)從中隨機(jī)抽取40名學(xué)生的測(cè)試成
績(jī),整理數(shù)據(jù)并按分?jǐn)?shù)段
,
,
,
,
,
進(jìn)行分
組,已知測(cè)試分?jǐn)?shù)均為整數(shù),現(xiàn)用每組區(qū)間的中點(diǎn)值代替該組中的每個(gè)數(shù)據(jù),則得到體育成績(jī)的折
線圖如下:
![]()
(1)若體育成績(jī)大于或等于70分的學(xué)生為“體育良好”,已知該校高一年級(jí)有1000名學(xué)生,試估計(jì)該校高一年級(jí)學(xué)生“體育良好”的人數(shù);
(2)為分析學(xué)生平時(shí)的體育活動(dòng)情況,現(xiàn)從體育成績(jī)?cè)?/span>
和
的樣本學(xué)生中隨機(jī)抽取2人,求所抽取的2名學(xué)生中,至少有1人為“體育良好”的概率;
(3)假設(shè)甲、乙、丙三人的體育成績(jī)分別為
,
,
,且
,
,
,當(dāng)三人的體育成績(jī)方差
最小時(shí),寫(xiě)出
,
,
的值(不要求證明).
注:
,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
(1)求函數(shù)
在區(qū)間
上的值域
(2)把函數(shù)
圖象所有點(diǎn)的上橫坐標(biāo)縮短為原來(lái)的
倍,再把所得的圖象向左平移
個(gè)單位長(zhǎng)度
,再把所得的圖象向下平移1個(gè)單位長(zhǎng)度,得到函數(shù)
, 若函數(shù)
關(guān)于點(diǎn)
對(duì)稱
(i)求函數(shù)
的解析式;
(ii)求函數(shù)
單調(diào)遞增區(qū)間及對(duì)稱軸方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1各條棱長(zhǎng)均為4,且AA1⊥平面ABC,D為AA1的中點(diǎn),M,N分別在線段BB1和線段CC1上,且B1M=3BM,CN=3C1N,
![]()
(1)證明:平面DMN⊥平面BB1C1C;
(2)求三棱錐B1﹣DMN的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
,求曲線
在點(diǎn)
處的切線;
(2)若函數(shù)
在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)
的取值范圍;
(3)設(shè)函數(shù)
,若在
上至少存在一點(diǎn)
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校倡導(dǎo)為特困學(xué)生募捐,要求在自動(dòng)購(gòu)水機(jī)處每購(gòu)買(mǎi)一瓶礦泉水,便自覺(jué)向捐款箱中至少投入一元錢(qián).現(xiàn)統(tǒng)計(jì)了連續(xù)5天的售出礦泉水箱數(shù)和收入情況,列表如下:
售出水量 | 7 | 6 | 6 | 5 | 6 |
收入 | 165 | 142 | 148 | 125 | 150 |
學(xué)校計(jì)劃將捐款以獎(jiǎng)學(xué)金的形式獎(jiǎng)勵(lì)給品學(xué)兼優(yōu)的特困生,規(guī)定:特困生綜合考核前20名,獲一等獎(jiǎng)學(xué)金500元;綜合考核21-50名,獲二等獎(jiǎng)學(xué)金300元;綜合考核50名以后的不獲得獎(jiǎng)學(xué)金.
(1)若
與
成線性相關(guān),則某天售出9箱水時(shí),預(yù)計(jì)收入為多少元?
(2)甲乙兩名學(xué)生獲一等獎(jiǎng)學(xué)金的概率均為
,獲二等獎(jiǎng)學(xué)金的概率均為
,不獲得獎(jiǎng)學(xué)金的概率均為
,已知甲乙兩名學(xué)生獲得哪個(gè)等級(jí)的獎(jiǎng)學(xué)金相互獨(dú)立,求甲乙兩名學(xué)生所獲得獎(jiǎng)學(xué)金之和
的分布列及數(shù)學(xué)期望;
附:回歸方程
,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)
時(shí),若函數(shù)
在
上的最小值為0,求
的值;
(3)當(dāng)
時(shí),若函數(shù)
在
上既有最大值又有最小值,且
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)![]()
.
(Ⅰ)求函數(shù)
的單調(diào)遞增區(qū)間;
(Ⅱ)在銳角
中,若
,且能蓋住
的最小圓的面積為
,求
周長(zhǎng)的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com