【題目】近幾年一種新奇水果深受廣大消費(fèi)者的喜愛,一位農(nóng)戶發(fā)揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經(jīng)濟(jì)效益.根據(jù)資料顯示,產(chǎn)出的新奇水果的箱數(shù)x(單位:十箱)與成本y(單位:千元)的關(guān)系如下:
x | 1 | 3 | 4 | 6 | 7 |
y | 5 | 6.5 | 7 | 7.5 | 8 |
![]()
y與x可用回歸方程
( 其中
,
為常數(shù))進(jìn)行模擬.
(Ⅰ)若該農(nóng)戶產(chǎn)出的該新奇水果的價(jià)格為150元/箱,試預(yù)測該新奇水果100箱的利潤是多少元.|.
(Ⅱ)據(jù)統(tǒng)計(jì),10月份的連續(xù)16天中該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的頻率分布直方圖如圖所示.
(i)若從箱數(shù)在
內(nèi)的天數(shù)中隨機(jī)抽取2天,估計(jì)恰有1天的水果箱數(shù)在
內(nèi)的概率;
(ⅱ)求這16天該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的平均值.(每組用該組區(qū)間的中點(diǎn)值作代表)
參考數(shù)據(jù)與公式:設(shè)
,則
|
|
|
|
0.54 | 6.8 | 1.53 | 0.45 |
線性回歸直線
中,
,
.
【答案】(Ⅰ)6636;(Ⅱ)(i)
;(ⅱ)125箱
【解析】
(Ⅰ)根據(jù)參考數(shù)據(jù)得到
和
,代入得到回歸直線方程
,
,
再代入
求成本,最后代入利潤公式;
(Ⅱ)(。┦紫确謩e計(jì)算水果箱數(shù)在
和
內(nèi)的天數(shù),再用編號(hào)列舉基本事件的方法求概率;(ⅱ)根據(jù)頻率分布直方圖直接計(jì)算結(jié)果.
(Ⅰ)根據(jù)題意,
,
所以
,所以
.又
,所以
.
所以
時(shí),
(千元),
即該新奇水果100箱的成本為8364元,故該新奇水果100箱的利潤
.
(Ⅱ)(i)根據(jù)頻率分布直方圖,可知水果箱數(shù)在
內(nèi)的天數(shù)為![]()
設(shè)這兩天分別為a,b,水果箱數(shù)在
內(nèi)的天數(shù)為
,設(shè)這四天分別為A,B,C,D,
所以隨機(jī)抽取2天的基本結(jié)果為
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,共15種.滿足恰有1天的水果箱數(shù)在
內(nèi)的結(jié)果為
,
,
,
,
,
,
,
,共8種,
所以估計(jì)恰有1天的水果箱數(shù)在
內(nèi)的概率為
.
(ⅱ)這16天該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的平均值為
(箱).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的有______.
①回歸直線
恒過點(diǎn)
,且至少過一個(gè)樣本點(diǎn);
②根據(jù)
列列聯(lián)表中的數(shù)據(jù)計(jì)算得出
,而
,則有
的把握認(rèn)為兩個(gè)分類變量有關(guān)系,即有
的可能性使得“兩個(gè)分類變量有關(guān)系”的推斷出現(xiàn)錯(cuò)誤;
③
是用來判斷兩個(gè)分類變量是否相關(guān)的隨機(jī)變量,當(dāng)
的值很小時(shí)可以推斷兩類變量不相關(guān);
④某項(xiàng)測量結(jié)果
服從正態(tài)分布
,則
,則
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分,(1)小問7分,(2)小問5分)
設(shè)函數(shù)![]()
(1)若
在
處取得極值,確定
的值,并求此時(shí)曲線
在點(diǎn)
處的切線方程;
(2)若
在
上為減函數(shù),求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】比較甲、乙兩名學(xué)生的數(shù)學(xué)學(xué)科素養(yǎng)的各項(xiàng)能力指標(biāo)值(滿分為5分,分值高者為優(yōu)),繪制了如圖1所示的六維能力雷達(dá)圖,例如圖中甲的數(shù)學(xué)抽象指標(biāo)值為4,乙的數(shù)學(xué)抽象指標(biāo)值為5,則下面敘述正確的是( )
![]()
A. 乙的邏輯推理能力優(yōu)于甲的邏輯推理能力
B. 甲的數(shù)學(xué)建模能力指標(biāo)值優(yōu)于乙的直觀想象能力指標(biāo)值
C. 乙的六維能力指標(biāo)值整體水平優(yōu)于甲的六維能力指標(biāo)值整體水平
D. 甲的數(shù)學(xué)運(yùn)算能力指標(biāo)值優(yōu)于甲的直觀想象能力指標(biāo)值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家統(tǒng)計(jì)局服務(wù)業(yè)調(diào)查中心和中國物流與采購聯(lián)合會(huì)發(fā)布的2018年10月份至2019年9月份共12個(gè)月的中國制造業(yè)采購經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯(cuò)誤的是( )
![]()
A.12個(gè)月的PMI值不低于50%的頻率為![]()
B.12個(gè)月的PMI值的平均值低于50%
C.12個(gè)月的PMI值的眾數(shù)為49.4%
D.12個(gè)月的PMI值的中位數(shù)為50.3%
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,函數(shù)
,其中
,
是
的一個(gè)極值點(diǎn),且
.
(1)討論
的單調(diào)性
(2)求實(shí)數(shù)
和a的值
(3)證明![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,則關(guān)于x的方程
有以下結(jié)論,其中正確的結(jié)論為( )
A.當(dāng)
時(shí),方程
恒有實(shí)根
B.當(dāng)
時(shí),方程
在
內(nèi)有兩個(gè)不等實(shí)根
C.當(dāng)
時(shí),方程
在
內(nèi)最多有9個(gè)不等實(shí)根
D.若方程
在
內(nèi)的實(shí)根的個(gè)數(shù)為偶數(shù),則所有實(shí)根之和為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知坐標(biāo)平面上動(dòng)點(diǎn)
與兩個(gè)定點(diǎn)
,
,且
.
(1)求點(diǎn)
的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中軌跡為
,過點(diǎn)
的直線
被
所截得的線段長度為8,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電視傳媒公司為了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖,將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.
![]()
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷是否在犯錯(cuò)誤的概率不超過
的前提下認(rèn)為"體育迷"與性別有關(guān).
性別 | 非體育迷 | 體育迷 | 總計(jì) |
男 | |||
女 | 10 | 55 | |
總計(jì) |
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:
,其中
)
(2)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列期望
和方差
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com