【題目】某水產(chǎn)品經(jīng)銷商銷售某種鮮魚,售價為每公斤
元,成本為每公斤
元.銷售宗旨是當天進貨當天銷售.如果當天賣不出去,未售出的全部降價處理完,平均每公斤損失
元.根據(jù)以往的銷售情況,按
,
,
,
,
進行分組,得到如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖計算該種鮮魚日需求量的平均數(shù)
(同一組中的數(shù)據(jù)用該組區(qū)間中點值代表);
(2)該經(jīng)銷商某天購進了
公斤這種鮮魚,假設當天的需求量為
公斤
,利潤為
元.求
關于
的函數(shù)關系式,并結合頻率分布直方圖估計利潤
不小于
元的概率.
![]()
【答案】(1)265;(2)0.7.
【解析】
試題分析:(1)每個矩形的中點橫坐標與該矩形的縱坐標相乘后求和,即可得到該種鮮魚日需求量的平均數(shù);(2)分兩種情況討論,利用銷售額與成本的差可求得
關于
的函數(shù)關系式,根據(jù)利潤
不小于
元,求出
,根據(jù)直方圖的性質可得利潤
不小于
元的概率,等于后三個矩形的面積之和,從而可得結果.
試題解析:(Ⅰ)x=50×0.0010×100+150×0.0020×100+250×0.0030×100+350×0.0025×100+450×0.0015×100=265.
(Ⅱ)當日需求量不低于300公斤時,利潤Y=(20-15)×300=1500元;
當日需求量不足300公斤時,利潤Y=(20-15)x-(300-x)×3=8x-900元;
故Y=
,
由Y≥700得,200≤x≤500,
所以P(Y≥700)=P(200≤x≤500)
=0.0030×100+0.0025×100+0.0015×100=0.7.
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
已知拋物線C的方程C:y2="2" p x(p>0)過點A(1,-2).
(I)求拋物線C的方程,并求其準線方程;
(II)是否存在平行于OA(O為坐標原點)的直線l,使得直線l與拋物線C有公共點,且直線OA與l的距離等于
?若存在,求出直線l的方程;若不存在,說明理由。
【答案】(I)拋物線C的方程為
,其準線方程為
(II)符合題意的直線l 存在,其方程為2x+y-1 =0.
【解析】
試題(Ⅰ)求拋物線標準方程,一般利用待定系數(shù)法,只需一個獨立條件確定p的值:(-2)2=2p·1,所以p=2.再由拋物線方程確定其準線方程:
,(Ⅱ)由題意設
:
,先由直線OA與
的距離等于
根據(jù)兩條平行線距離公式得:
解得
,再根據(jù)直線
與拋物線C有公共點確定![]()
試題解析:解 (1)將(1,-2)代入y2=2px,得(-2)2=2p·1,
所以p=2.
故所求的拋物線C的方程為![]()
其準線方程為
.
(2)假設存在符合題意的直線
,
其方程為
.
由
得
.
因為直線
與拋物線C有公共點,
所以Δ=4+8t≥0,解得
.
另一方面,由直線OA到
的距離![]()
可得
,解得
.
因為-1[-
,+∞),1∈[-
,+∞),
所以符合題意的直線
存在,其方程為
.
考點:拋物線方程,直線與拋物線位置關系
【名師點睛】求拋物線的標準方程的方法及流程
(1)方法:求拋物線的標準方程常用待定系數(shù)法,因為未知數(shù)只有p,所以只需一個條件確定p值即可.
(2)流程:因為拋物線方程有四種標準形式,因此求拋物線方程時,需先定位,再定量.
提醒:求標準方程要先確定形式,必要時要進行分類討論,標準方程有時可設為y2=mx或x2=my(m≠0).
【題型】解答題
【結束】
22
【題目】已知橢圓
:
的左右焦點與其短軸的一個端點是正三角形的三個頂點,點
在橢圓
上.
(1)求橢圓
的方程;
(2)直線
過橢圓左焦點
交橢圓于
,
為橢圓短軸的上頂點,當直線
時,求
的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C對應的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大;
(2)若△ABC的面積S=5
,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)若直線
與曲線
的交點的橫坐標為
,且
,求整數(shù)
所有可能的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)
是R上的奇函數(shù).
(1)求a,b的值;
(2)判斷并證明f(x)的單調(diào)性;
(3)若對任意實數(shù)x,不等式f[f(x)﹣m]
0恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系
中,曲線
的參數(shù)方程是
(
為參數(shù)),以該直角坐標系的原點
為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)寫出曲線
的普通方程和直線
的直角坐標方程;
(2)設點
,直線
與曲線
相交于
兩點,且
,求實數(shù)
的值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com