【題目】如圖,已知橢圓
(a>b>0)的離心率
,過點
和
的直線與原點的距離為
.
![]()
(1)求橢圓的方程.
(2)已知定點
,若直線
與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.
【答案】(1)
;(2)存在
,使得以
為直徑的圓過點
.
【解析】
試題分析:(1)由
兩點的坐標(biāo)可得直線
方程,根據(jù)點到線的距離公式可得
間的關(guān)系式,再結(jié)合離心率及
可解得
的值.(2)將直線方程與橢圓方程聯(lián)立消去
整理為關(guān)于
的一元二次方程.根據(jù)有2個交點可知其判別式大于0得
的范圍.由上式可得兩根之和,兩根之積.以
為直徑的圓過點
時
,根據(jù)直線垂直斜率相乘等于
可得
的值.若滿足前邊判別式大于0得的
的范圍說明存在,否則說明不存在.
試題解析:解:解析:(1)直線
方程為:
.
依題意
解得 ![]()
∴ 橢圓方程為
.
(2)假若存在這樣的
值,由
得![]()
.
∴
①
設(shè)
,
、
,
,則
②
而
.
要使以
為直徑的圓過點
,當(dāng)且僅當(dāng)
時,則
,即
∴
③
將②式代入③整理解得
.經(jīng)驗證,
,使①成立.
綜上可知,存在
,使得以
為直徑的圓過點
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}中,a1=1,an+an+1=(
)n , Sn=a1+4a2+42a3+…+4n﹣1an , 類比課本中推導(dǎo)等比數(shù)列前項和公式的方法,可求得5Sn﹣4nan= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓
經(jīng)過不同的三點
在第三象限),線段
的中點在直線
上.
![]()
(Ⅰ)求橢圓
的方程及點
的坐標(biāo);
(Ⅱ)設(shè)點
是橢圓
上的動點(異于點
且直線
分別交直線
于
兩點,問
是否為定值?若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4
4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,圓C的參數(shù)方程為
,(t為參數(shù)),在以原點O為極點,x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
,A,B兩點的極坐標(biāo)分別為
.
(Ⅰ)求圓C的普通方程和直線
的直角坐標(biāo)方程;
(Ⅱ)點P是圓C上任一點,求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱
中,側(cè)面
為矩形,
,
,
為
的中點,
與
交于點
,
側(cè)面
.
![]()
(1)證明:
;
(2)若
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某校高一年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計,隨機抽取
名學(xué)生作為樣本,得到這
名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
| 10 | 0.25 |
| 25 |
|
|
|
|
| 2 | 0.05 |
合計 |
| 1 |
![]()
(1)求出表中
及圖中
的值;
(2)試估計他們參加社區(qū)服務(wù)的平均次數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體
中,
在線段
上運動且不與
,
重合,給出下列結(jié)論:
①
;
②
平面
;
③二面角
的大小隨
點的運動而變化;
④三棱錐
在平面
上的投影的面積與在平面
上的投影的面積之比隨
點的運動而變化;
其中正確的是( )
A. ①③④ B. ①③
C. ①②④ D. ①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
分別為雙曲線
的左、右頂點,雙曲線的實軸長為
,焦點到漸近線的距離為
.
(1)求雙曲線的方程;
(2)已知直線
與雙曲線的右支交于
兩點,且在雙曲線的右支上存在點
,使
,求
的值及點
的坐標(biāo).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com