欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.已知函數(shù)f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=x2-x-1,則函數(shù)f(x)的解析式為f(x)=$\left\{\begin{array}{l}{{x}^{2}-x-1,x<0}\\{0,x=0}\\{-{x}^{2}-x+1,x>0}\end{array}\right.$.

分析 由題意得f(0)=0,由x<0時f(x)的解析式,結合函數(shù)的奇偶性求出x>0時f(x)的解析式.

解答 解:∵f(x)是定義在R上的奇函數(shù),
∴f(0)=0;
又∵x<0時,f(x)=x2-x-1,
∴x>0時,-x<0;
∴f(-x)=(-x)2-(-x)-1=x2+x-1,
又f(-x)=-f(x),
∴f(x)=-f(-x)=-(x2+x-1)=-x2-x+1;
綜上,f(x)=$\left\{\begin{array}{l}{{x}^{2}-x-1,x<0}\\{0,x=0}\\{-{x}^{2}-x+1,x>0}\end{array}\right.$.
故答案為:f(x)=$\left\{\begin{array}{l}{{x}^{2}-x-1,x<0}\\{0,x=0}\\{-{x}^{2}-x+1,x>0}\end{array}\right.$.

點評 本題考查了利用函數(shù)的奇偶性求函數(shù)解析式的問題,解題時應注意題目中定義在R上的奇函數(shù)即f(0)=0,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.若x2-2ax+a+2≥0對任意x∈[0,2]恒成立,則實數(shù)a的取值范圍為[-2,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知實數(shù)x,y,z為正數(shù),則$\frac{xy+yz}{{{x^2}+{y^2}+{z^2}}}$的最大值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=sin(x+θ)cosx(|θ|≤$\frac{π}{2}$)的最大值為$\frac{3}{4}$.
(1)求f($\frac{5π}{12}$)的值;
(2)解不等式f(x)≥$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.口袋中放有大小相等的2個紅球和1個白球,有放回地每次摸取1個球,定義數(shù)列{an}:若第n次摸到紅球,an=-1;若第n次摸到白球,an=1.如果Sn為數(shù)列{an}的前n項和,那么S7=3的概率為(  )
A.$C_7^5×{({\frac{1}{3}})^2}×{({\frac{2}{3}})^5}$B.$C_7^5×{({\frac{1}{3}})^2}×{({\frac{1}{3}})^5}$C.$C_7^3×{({\frac{1}{3}})^2}×{({\frac{2}{3}})^5}$D.$C_7^2×{({\frac{2}{3}})^2}×{({\frac{1}{3}})^5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列導數(shù)運算正確的是( 。
A.(x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$B.(xlnx)′=lnx+1C.(cosx)′=sinxD.(2x)′=x2x-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知函數(shù)y=f($\frac{{x}^{2}}{1+{x}^{2}}$)的定義域為(0,2],則函數(shù)y=f(x+1)的定義域為(-1,-$\frac{1}{5}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知M(x0,y0)是雙曲線C:$\frac{x^2}{2}$-y2=1上的一點,F(xiàn)1,F(xiàn)2是C上的兩個焦點,若∠F1MF2為鈍角,則x0的取值范圍是-$\frac{2\sqrt{6}}{3}$<x0<$\frac{2\sqrt{6}}{3}$且x0≠$±\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列所給對象能構成集合的是( 。
A.某校高一(5)班數(shù)學成績非常突出的男生能組成一個集合
B.《數(shù)學1(必修)》課本中所有的難題能組成一個集合
C.性格開朗的女生可以組成一個集合
D.圓心為定點,半徑為1的圓內(nèi)的點能組成一個集合

查看答案和解析>>

同步練習冊答案