【題目】設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn , 滿足4Sn=an+12﹣4n﹣1,n∈N* , 且a2 , a5 , a14構(gòu)成等比數(shù)列.
(1)證明:a2=
;
(2)求數(shù)列{an}的通項公式;
(3)證明:對一切正整數(shù)n,有
.
【答案】
(1)解:當n=1時,
,
∵ ![]()
(2)解:當n≥2時,滿足
,且
,
∴
,
∴
,
∵an>0,∴an+1=an+2,
∴當n≥2時,{an}是公差d=2的等差數(shù)列.
∵a2,a5,a14構(gòu)成等比數(shù)列,∴
,
,解得a2=3,
由(1)可知,
,∴a1=1∵a2﹣a1=3﹣1=2,
∴{an}是首項a1=1,公差d=2的等差數(shù)列.
∴數(shù)列{an}的通項公式an=2n﹣1
(3)解:由(2)可得式
=
.
∴ ![]()
![]()
【解析】(1)對于
,令n=1即可證明;(2)利用
,且
,(n≥2),兩式相減即可求出通項公式.(3)由(2)可得
=
.利用“裂項求和”即可證明.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(
).
(1)當曲線
在點
處的切線的斜率大于
時,求函數(shù)
的單調(diào)區(qū)間;
(2)若
對
恒成立,求
的取值范圍.(提示:
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
是定義在
上的奇函數(shù),且
時,
,則函數(shù)
(
為自然對數(shù)的底數(shù))的零點個數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司即將推車一款新型智能手機,為了更好地對產(chǎn)品進行宣傳,需預(yù)估市民購買該款手機是否與年齡有關(guān),現(xiàn)隨機抽取了50名市民進行購買意愿的問卷調(diào)查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強,調(diào)查結(jié)果用莖葉圖表示如圖所示.
![]()
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成
列聯(lián)表,并判斷是否有95%的把握認為市民是否購買該款手機與年齡有關(guān)?
購買意愿強 | 購買意愿弱 | 合計 | |
20~40歲 | |||
大于40歲 | |||
合計 |
(2)從購買意愿弱的市民中按年齡進行分層抽樣,共抽取5人,從這5人中隨機抽取2人進行采訪,記抽到的2人中年齡大于40歲的市民人數(shù)為
,求
的分布列和數(shù)學期望.
附:
.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+2x+c的對稱軸為x=1,g(x)=x+
(x>0).
(1)求函數(shù)g(x)的最小值及取得最小值時x的值;
(2)試確定c的取值范圍,使g(x)﹣f(x)=0至少有一個實根;
(3)若F(x)=﹣f(x)+4x+c,存在實數(shù)t,對任意x∈[1,m],使F(x+t)≤3x恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)過原點的直線與橢圓
交于
兩點,點
為橢圓上不同于
的一點,直線
的斜率均存在,且直線
的斜率之積為
.
(1)求橢圓
的離心率;
(2)設(shè)
分別為橢圓的左、右焦點,斜率為
的直線
經(jīng)過橢圓的右焦點,且與橢圓交于
兩點.若點
在以
為直徑的圓內(nèi)部,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某天數(shù)學課上,你突然驚醒,發(fā)現(xiàn)黑板上有如下內(nèi)容:
例:求x3﹣3x,x∈[0,+∞)的最小值.解:利用基本不等式a+b+c≥3
,得到x3+1+1≥3x,于是x3﹣3x=x3+1+1﹣3x﹣2≥3x﹣3x﹣2=﹣2,當且僅當x=1時,取到最小值﹣2
(1)老師請你模仿例題,研究x4﹣4x,x∈[0,+∞)上的最小值;
(提示:a+b+c+d≥4
)
(2)研究
x3﹣3x,x∈[0,+∞)上的最小值;
(3)求出當a>0時,x3﹣ax,x∈[0,+∞)的最小值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com