【題目】下列關(guān)于函數(shù)
的判斷正確的是( )
①
的解集是
;
②
極小值,
是極大值;
③
沒(méi)有最小值,也沒(méi)有最大值.
A. ①③ B. ①②③ C. ② D. ①②
【答案】D
【解析】分析:由f(x)>0可解得x的范圍,從而確定①正確;
對(duì)函數(shù)f(x)進(jìn)行求導(dǎo),然后令f'(x)=0求出x,在根據(jù)f'(x)的正負(fù)判斷原函數(shù)的單調(diào)性進(jìn)而可確定②正確.
根據(jù)函數(shù)的單調(diào)性可判斷極大值即是原函數(shù)的最大值,無(wú)最小值,③不正確.從而得到答案.
詳解:由f(x)>0(2x﹣x2)ex>02x﹣x2>00<x<2,故①正確;
f′(x)=ex(2﹣x2),由f′(x)=0得x=±
,
由f′(x)<0得x>
或x<﹣
,
由f′(x)>0得﹣
<x<
,
∴f(x)的單調(diào)減區(qū)間為(﹣∞,﹣
),(
,+∞).單調(diào)增區(qū)間為(﹣,
).
∴f(x)的極大值為f(
),極小值為f(﹣
),故②正確.
∵x<﹣
時(shí),f(x)<0恒成立.
∴f(x)無(wú)最小值,但有最大值f(
)
∴③不正確.
故選:D.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,攝影愛(ài)好者在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測(cè)得立柱頂端O的仰角和立柱底部B的俯角均為
,已知攝影愛(ài)好者的身高約為
米(將眼睛S距地面的距離SA按
米處理).
![]()
(1)求攝影愛(ài)好者到立柱的水平距離AB和立柱的高度OB;
(2)立柱的頂端有一長(zhǎng)為2米的彩桿MN,且MN繞其中點(diǎn)O在攝影愛(ài)好者與立柱所在的平面內(nèi)旋轉(zhuǎn).在彩桿轉(zhuǎn)動(dòng)的任意時(shí)刻,攝影愛(ài)好者觀察彩桿MN的視角
(設(shè)為
)是否存在最大值?若存在,請(qǐng)求出
取最大值時(shí)
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線(xiàn)
與拋物線(xiàn)
相交于不同的
兩點(diǎn).
(1)如果直線(xiàn)
過(guò)拋物線(xiàn)的焦點(diǎn),求
的值;
(2)如果
,證明:直線(xiàn)
必過(guò)一定點(diǎn),并求出該定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
(I)求函數(shù)在點(diǎn)(1,0)處的切線(xiàn)方程;
(II)設(shè)實(shí)數(shù)k使得f(x)< kx恒成立,求k的范圍;
(III)設(shè)函數(shù)
,求函數(shù)h(x)在區(qū)間
上的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域在R上的函數(shù)f(x)=|x+1|+|x﹣2|的最小值為a.
(1)求a的值;
(2)若p,q,r為正實(shí)數(shù),且p+q+r=a,求證:p2+q2+r2≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在斜三棱柱ABC—A1B1C1中,點(diǎn)D,D1分別為AC,A1C1上的點(diǎn).
(1)當(dāng)
的值等于何值時(shí),BC1∥平面AB1D1;
(2)若平面BC1D∥平面AB1D1,求
的值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)生產(chǎn)產(chǎn)品
件的總成本
(萬(wàn)元).已知產(chǎn)品單價(jià)
(萬(wàn)元)與產(chǎn)品件數(shù)
滿(mǎn)足
,生產(chǎn)100件這樣的產(chǎn)品單價(jià)為50萬(wàn)元.
(1)設(shè)產(chǎn)量為
件時(shí),總利潤(rùn)為
(萬(wàn)元),求
的解析式;
(2)產(chǎn)量
定為多少時(shí)總利潤(rùn)
(萬(wàn)元)最大?并求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的長(zhǎng)軸長(zhǎng)為4,直線(xiàn)
被橢圓
截得的線(xiàn)段長(zhǎng)為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓
的右頂點(diǎn)作互相垂直的兩條直線(xiàn)
分別交橢圓
于
兩點(diǎn)(點(diǎn)
不同于橢圓
的右頂點(diǎn)),證明:直線(xiàn)
過(guò)定點(diǎn)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的公差為2,前n項(xiàng)和為Sn , 且S1 , S2 , S4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=(﹣1)n﹣1
,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com