【題目】已知{an}為等差數(shù)列,且a3=﹣6,a6=0.
(1)求{an}的通項(xiàng)公式.
(2)若等比數(shù)列{bn}滿足b1=8,b2=a1+a2+a3 , 求{bn}的前n項(xiàng)和公式.
【答案】
(1)解:∵{an}為等差數(shù)列,且a3=﹣6,a6=0,
∴
,解得a1=﹣10,d=2,
∴an=﹣10+(n﹣1)×2=2n﹣12
(2)解:∵等比數(shù)列{bn}滿足b1=8,b2=a1+a2+a3=﹣10﹣8﹣6=﹣24,
∴q=
=
=﹣3,
∴{bn}的前n項(xiàng)和公式:
Sn=
=2﹣2(﹣3)n
【解析】(1)由已知條件利用等差數(shù)列的通項(xiàng)公式求出首項(xiàng)和公差,由此能求出an=2n﹣12.(2)由等比數(shù)列{bn}滿足b1=8,b2=a1+a2+a3=﹣10﹣8﹣6=﹣24,求出q=
=
=﹣3,由此能求出{bn}的前n項(xiàng)和公式.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
的圓心在坐標(biāo)原點(diǎn),且與直線
相切.
(1)求直線
被圓
所截得的弦
的長(zhǎng);
(2)過點(diǎn)
作兩條與圓
相切的直線,切點(diǎn)分別為
求直線
的方程;
(3)若與直線
垂直的直線
與圓
交于不同的兩點(diǎn)
,若
為鈍角,求直線
在
軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 點(diǎn)(n,
)在直線y=
x+
上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
,求數(shù)列{bn}的前n項(xiàng)和為Tn , 并求使不等式Tn>
對(duì)一切n∈N*都成立的最大正整數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的最小正周期是
.
(1)求ω的值;
(2)求函數(shù)f(x)的最大值,并且求使f(x)取得最大值的x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a、b、c成等比數(shù)列,非零實(shí)數(shù)x,y分別是a與b,b與c的等差中項(xiàng).
(1)已知 ①a=1、b=2、c=4,試計(jì)算
的值;
②a=﹣1、b=
、c=﹣
,試計(jì)算
的值
(2)試推測(cè)
與2的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
,
.
(1)設(shè)函數(shù)
,若
在區(qū)間
上單調(diào),求實(shí)數(shù)
的取值范圍;
(2)求證:
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com