【題目】如圖,四棱錐
中,底面
為矩形,
平面
,
為
的中點(diǎn).
![]()
(1)證明:
平面![]()
(2)已知
,
,
求二面角
的余弦值.
【答案】(1)證明見解析;(2)
.
【解析】試題分析:
(1)以點(diǎn)A為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,設(shè)
,可得:直線
的方向向量為:
,平面
的一個(gè)法向量為
,
結(jié)合
可得:
平面
.
(2)結(jié)合(1)的結(jié)論結(jié)合題意可得平面
的一個(gè)法向量為
.平面
的一個(gè)法向量為:
,據(jù)此計(jì)算可得二面角
的余弦值為
.
試題解析:
(1)以點(diǎn)A為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,設(shè)
,
由幾何關(guān)系有:
,
則直線
的方向向量為:
,
,
設(shè)平面
的法向量
,則:
,
據(jù)此可得:平面
的一個(gè)法向量為
,
結(jié)合
可知:
,據(jù)此可得:
平面
.
![]()
(2)結(jié)合(1)的結(jié)論可知:
,
則平面
的一個(gè)法向量為
.
由
平面
可知平面
的一個(gè)法向量為:
,
據(jù)此可得:
,
則
,
觀察可知二面角
的平面角為銳角,
故二面角
的余弦值為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=x+1,那么不等式2f(x)﹣1<0的解集是_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓C1:x2+y2=4,圓C2:(x﹣2)2+y2=4.
(1)在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,分別求圓C1與圓C2的極坐標(biāo)方程及兩圓交點(diǎn)的極坐標(biāo);
(2)求圓C1與圓C2的公共弦的參數(shù)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )
![]()
A. 消耗1升汽油,乙車最多可行駛5千米
B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C. 甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油
D. 某城市機(jī)動(dòng)車最高限速80千米/小時(shí). 相同條件下,在該市用丙車比用乙車更省油
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高二某班共有20名男生,在一次體驗(yàn)中這20名男生被平均分成兩個(gè)小組,第一組和第二組男生的身高(單位:
)的莖葉圖如下:
![]()
(1)根據(jù)莖葉圖,分別寫出兩組學(xué)生身高的中位數(shù);
(2)從該班身高超過
的7名男生中隨機(jī)選出2名男生參加;@球隊(duì)集訓(xùn),求這2名男生至少有1人來自第二組的概率;
(3)在兩組身高位于
(單位:
)的男生中各隨機(jī)選出2人,設(shè)這4人中身高位于
(單位:
)的人數(shù)為
,求隨機(jī)變量
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長度單位建立坐標(biāo)系,已知直線l的極坐標(biāo)方程為2ρcosθ+ρsinθ=3,曲線C的參數(shù)方程為
(α為參數(shù)).
(1)求曲線C的普通方程和直線l的直角坐標(biāo)方程;
(2)P(1,1),設(shè)直線l與曲線C相交于A、B兩點(diǎn),求|PA||PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司試銷一種成本單價(jià)為500元的新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià),又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似看作一次函數(shù)y=kx+b(k≠0),函數(shù)圖象如圖所示.
![]()
(1)根據(jù)圖象,求一次函數(shù)y=kx+b(k≠0)的表達(dá)式;
(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價(jià)-成本總價(jià))為S元.試問銷售單價(jià)定為多少時(shí),該公司可獲得最大毛利潤?最大毛利潤是多少?此時(shí)的銷售量是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯(cuò)誤的是( )
A. 先把高二年級的2000名學(xué)生編號為1到2000,再從編號為1到50的50名學(xué)生中隨機(jī)抽取1名學(xué)生,其編號為
,然后抽取編號為
,
,
的學(xué)生,這樣的抽樣方法是系統(tǒng)抽樣法
B. 線性回歸直線
一定過樣本中心點(diǎn)![]()
C. 若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)
的值越接近于1
D. 若一組數(shù)據(jù)1、
、3的平均數(shù)是2,則該組數(shù)據(jù)的方差是![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)f(x)=sinx+
cosx(x∈R),先將y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的
倍(縱坐標(biāo)不變),再將得到的圖象上所有點(diǎn)向右平行移動(dòng)θ(θ>0)個(gè)單位長度,得到的圖象關(guān)于直線x=
對稱,則θ的最小值為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com