【題目】2018年6月14日,世界杯足球賽在俄羅斯拉開帷幕,世界杯給俄羅斯經(jīng)濟(jì)帶來了一定的增長,某紀(jì)念商品店的銷售人員為了統(tǒng)計(jì)世界杯足球賽期間商品的銷售情況,隨機(jī)抽查了該商品商店某天200名顧客的消費(fèi)金額情況,得到如圖頻率分布表:將消費(fèi)顧客超過4萬盧布的顧客定義為”足球迷”,消費(fèi)金額不超過4萬盧布的顧客定義為“非足球迷”。
消費(fèi)金額/萬盧布 |
|
|
|
|
|
| 合計(jì) |
顧客人數(shù) | 9 | 31 | 36 | 44 | 62 | 18 | 200 |
(1)求這200名顧客消費(fèi)金額的中位數(shù)與平均數(shù)(同一組中的消費(fèi)金額用該組的中點(diǎn)值作代表;
(2)該紀(jì)念品商店的銷售人員為了進(jìn)一步了解這200名顧客喜歡紀(jì)念品的類型,采用分層抽樣的方法從“非足球迷”,“足球迷”中選取5人,再從這5人中隨機(jī)選取3人進(jìn)行問卷調(diào)查,則選取的3人中“非足球迷”人數(shù)的分布列和數(shù)學(xué)期望。
【答案】(1)見解析;(2)見解析.
【解析】
(1)在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積應(yīng)該相等,由此可以估計(jì)中位數(shù)的值。平均數(shù)的估計(jì)值等于頻率直方圖中每個小矩形的面積乘以小矩形底邊中點(diǎn)的橫坐標(biāo)之和,這樣就可以求出這200名顧客消費(fèi)金額的中位數(shù)與平均數(shù)。
(2)通過頻率分布表可以求“足球迷”與“非足球迷”的人數(shù)比,這樣可以求出從“足球迷”“非足球迷”中選取5人,其中“足球迷”的人數(shù)及“非足球迷”的人數(shù),這樣可以求出選取的3人中非足球迷的人數(shù),取值是多少,求出它們相對應(yīng)的概率,最后列出分布列,算出數(shù)學(xué)期望。
(1)設(shè)這200名顧客消費(fèi)金額的中位數(shù)為t,則有
,解得![]()
所以這200名顧客消費(fèi)金額的中位數(shù)為
,
這200名顧客消費(fèi)金額的平均數(shù)
,
![]()
所以這200名顧客的消費(fèi)金額的平均數(shù)為3.367萬盧布。
(2)由頻率分布表可知,“足球迷”與“非足球迷”的人數(shù)比為
,
采用分層抽樣的方法,從“足球迷”“非足球迷”中選取5人,其中“足球迷”有
人,“非足球迷”有
人。
設(shè)
為選取的3人中非足球迷的人數(shù),取值為1,2,3.則
。
分布列為:
| 1 | 2 | 3 |
| 0.3 | 0.6 | 0.1 |
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五面體
中,側(cè)面
是正方形,
是等腰直角三角形,點(diǎn)
是正方形
對角線的交點(diǎn)
,
且
.
![]()
(1)證明:
平面
;
(2)若側(cè)面
與底面
垂直,求五面體
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(Ⅰ)討論
的單調(diào)性;
(Ⅱ)若函數(shù)
存在極值,對于任意的
,存在正實(shí)數(shù)
,使得
,試判斷
與
的大小關(guān)系并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知線段
的端點(diǎn)
的坐標(biāo)是
,端點(diǎn)
在圓
上運(yùn)動.
(Ⅰ)求線段
的中點(diǎn)
的軌跡
的方程;
(Ⅱ)設(shè)圓
與曲線
的兩交點(diǎn)為
,求線段
的長;
(Ⅲ)若點(diǎn)
在曲線
上運(yùn)動,點(diǎn)
在
軸上運(yùn)動,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
為
的導(dǎo)數(shù).
(Ⅰ)求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)證明:
在區(qū)間
上存在唯一零點(diǎn);
(Ⅲ)設(shè)
,若對任意
,均存在
,使得
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的右焦點(diǎn)為
,離心率為
。
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)
是橢圓
上不同的三點(diǎn),若直線
的斜率之積為
,試問從
兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出這個定值;若不是,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x,x∈R.
(1)當(dāng)m取何值時,方程|f(x)-2|=m有一個解?兩個解?
(2)若不等式[f(x)]2+f(x)-m>0在R上恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在
上的函數(shù)
滿足:①
(
為正常數(shù));②當(dāng)
時,
,若
的圖象上所有極大值對應(yīng)的點(diǎn)均落在同一條直線上,則
___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2016年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如下表所示.
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 |
| 5 | 0.050 |
第2組 |
| n | 0.350 |
第3組 |
| 30 | p |
第4組 |
| 20 | 0.200 |
第5組 |
| 10 | 0.100 |
合計(jì) | 100 | 1.000 |
![]()
(1)求頻率分布表中n,p的值,并估計(jì)該組數(shù)據(jù)的中位數(shù)(保留l位小數(shù));
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,則第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(3)在(2)的前提下,學(xué)校決定從6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有1名學(xué)生被甲考官面試的概率.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com