已知函數(shù)
,
,(
為自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)函數(shù)
在區(qū)間
上恒為正數(shù),求
的最小值;
(Ⅲ)若對任意給定的
,在
上總存在兩個不同的
,使得
成立,求
的取值范圍.
(Ⅰ)
的單調(diào)減區(qū)間為
,單調(diào)增區(qū)間為
(Ⅱ)
(Ⅲ)![]()
【解析】
試題分析:(Ⅰ)函數(shù)f (x)的定義域為
,
當(dāng)
時,![]()
由
, 由
.
故
的單調(diào)減區(qū)間為
,單調(diào)增區(qū)間為
. ……4分
(Ⅱ)
在
恒成立等價于:
在
恒成立,
令
則
,x∈
,
于是
在
上為減函數(shù),又在x=e處連續(xù),
故在
,![]()
從而要使
對任意的
恒成立.
只要
,故
的最小值為
. ……9分
(Ⅲ)一次函數(shù)
在
上遞增,故函數(shù)
在
上的值域是
.
當(dāng)
時,
為單調(diào)遞減函數(shù),不合題意;
當(dāng)
時,
,
要使
在
不單調(diào),只要
,此時
①
故
在
上單調(diào)遞減,在
上單調(diào)遞增.
注意到
時,![]()
∴![]()
∴對任意給定的
,在區(qū)間
上總存在兩個不同的
使得
成立,當(dāng)且僅當(dāng)
滿足下列條件
,即![]()
令
,
當(dāng)
時,
函數(shù)
單調(diào)遞增;
當(dāng)
時,
函數(shù)
單調(diào)遞減.
所以,當(dāng)
時有
即
對任意
恒成立.
又由
,解得
……②
∴ 綜合①②可知,當(dāng)
時,對任意給定的
,在
上總存在兩個不同的
,使
成立. ……14分
考點:本小題注意考查導(dǎo)數(shù)的應(yīng)用.
點評:導(dǎo)數(shù)是研究函數(shù)性質(zhì)的有力工具,研究單調(diào)性、極值、最值時不要忘記先求函數(shù)的定義域,而不等式恒成立問題,一般轉(zhuǎn)化為函數(shù)的最值問題解決,分類討論時要注意分類標(biāo)準(zhǔn)要不重不漏.
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)
(其中e為自然對數(shù))
求F(x)=h(x)
的極值。
設(shè)
(常數(shù)a>0),當(dāng)x>1時,求函數(shù)G(x)的單調(diào)區(qū)
間,并在極值存在處求極值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省中山市一中高三上學(xué)期第二次統(tǒng)測理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
,
(
,
為自然對數(shù)的底數(shù)).
(1)當(dāng)
時,求
的單調(diào)區(qū)間;
(2)對任意的
,
恒成立,求
的最小值;
(3)若對任意給定的
,在
上總存在兩個不同的
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省高三第二次段考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知函數(shù)
,
.(其中
為自然對數(shù)的底數(shù)),
(Ⅰ)設(shè)曲線
在
處的切線與直線
垂直,求
的值;
(Ⅱ)若對于任意實數(shù)
≥0,
恒成立,試確定實數(shù)
的取值范圍;
(Ⅲ)當(dāng)
時,是否存在實數(shù)
,使曲線C:
在點![]()
處的切線與
軸垂直?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省等三校高三2月月考數(shù)學(xué)文卷 題型:解答題
(本小題滿分14分)
已知函數(shù)
,
.(其中
為自然對數(shù)的底數(shù)),
(Ⅰ)設(shè)曲線
在
處的切線與直線
垂直,求
的值;
(Ⅱ)若對于任意實數(shù)
≥0,
恒成立,試確定實數(shù)
的取值范圍;
(Ⅲ)當(dāng)
時,是否存在實數(shù)
,使曲線C:
在點![]()
處的切線與
軸垂直?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆福建省福州市高二期末理科考試數(shù)學(xué)試卷 題型:解答題
已知函數(shù)
=
(e為自然對數(shù)的底數(shù))
(Ⅰ)求函數(shù)
單調(diào)遞增區(qū)間;(5分)
(Ⅱ)若
,求函數(shù)
在區(qū)間[0,
]上的最大值和最小值.(5分)
(III) 若函數(shù)
的圖象有三個不同的交點,求實數(shù)k的取值范圍.
(參考數(shù)據(jù)
)(2分)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com