【題目】已知橢圓
的左右焦點(diǎn)分別為
,點(diǎn)
為橢圓上一點(diǎn).
的重心為
,內(nèi)心為
,且
,則該橢圓的離心率為( )
A.
B.
C.
D. ![]()
【答案】A
【解析】
由題意,設(shè)Q(x0,y0),由G為△F1QF2的重心,得G點(diǎn)坐標(biāo)為(
,
),利用面積相等可得,
×2c|y0|=
(2a+2c)|
|,從而求橢圓的離心率.
橢圓
的左右焦點(diǎn)分別為F1(﹣c,0),F(xiàn)2(c,0),設(shè)Q(x0,y0),
∵G為△F1QF2的重心,∴G點(diǎn)坐標(biāo)為 G(
,
),
∵
,則
∥
,∴I的縱坐標(biāo)為
,
又∵|QF1|+|QF2|=2a,|F1F2|=2c,
∴
=
|F1F2||y0|,
又∵I為△F1QF2的內(nèi)心,∴|
|即為內(nèi)切圓的半徑,
內(nèi)心I把△F1QF2分為三個(gè)底分別為△F1MF2的三邊,高為內(nèi)切圓半徑的小三角形,
∴
=
(|QF1|+|F1F2|+|QF2|)|
|,
即
×2c|y0|=
(2a+2c)|
|,∴2c=a,∴橢圓C的離心率為e=
,
∴該橢圓的離心率
,
故選:A.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.
(Ⅰ)求a;
(Ⅱ)證明:f(x)存在唯一的極大值點(diǎn)x0 , 且e﹣2<f(x0)<2﹣2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|ω|<
)的部分圖象如圖所示,下列說(shuō)法正確的是( ) ![]()
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)的圖象關(guān)于點(diǎn)(﹣
,0)對(duì)稱(chēng)
C.將函數(shù)f(x)的圖象向左平移
個(gè)單位得到的函數(shù)圖象關(guān)于y軸對(duì)稱(chēng)
D.函數(shù)f(x)的單調(diào)遞增區(qū)間是[kπ+
,kπ+
](K∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , a1=1,an=
+2(n﹣1)(n∈N*).
(1)求證:數(shù)列{an}為等差數(shù)列,并分別寫(xiě)出an和Sn關(guān)于n的表達(dá)式;
(2)設(shè)數(shù)列
的前n項(xiàng)和為T(mén)n , 證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一動(dòng)圓與定圓
外切,同時(shí)和圓
內(nèi)切,定點(diǎn)A(1,1).
(1)求動(dòng)圓圓心P的軌跡E的方程,并說(shuō)明是何種曲線;
(2)M為E上任意一點(diǎn), F為E的左焦點(diǎn),試求
的最小值;
(3)試求
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣ax﹣alnx(a∈R),g(x)=﹣x3+
x2+2x﹣6,g(x)在[1,4]上的最大值為b,當(dāng)x∈[1,+∞)時(shí),f(x)≥b恒成立,則a的取值范圍( )
A.a≤2
B.a≤1
C.a≤﹣1
D.a≤0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),且滿足f(x+2)=﹣
,當(dāng)1≤x≤2時(shí),f(x)=x,則f(﹣
)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于異面直線
,有下列四個(gè)命題:
(1)過(guò)直線
有且僅有一個(gè)平面
,使
//
;
(2)過(guò)直線
有且僅有一個(gè)平面
,使
;
(3)在空間中存在平面
,使
//
,
//
;
(4)在空間中不存在平面
,使
,
;
其中正確命題的序號(hào)是____________.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com