【題目】2019年4月,河北、遼寧、江蘇、福建、湖北、湖南、廣東、重慶等8省市發(fā)布高考綜合改革實施方案,決定從2018年秋季入學(xué)的高中一年級學(xué)生開始實施“
”高考模式.所謂“
”,即“3”是指考生必選語文、數(shù)學(xué)、外語這三科;“1”是指考生在物理、歷史兩科中任選一科;“2”是指考生在生物、化學(xué)、思想政治、地理四科中任選兩科.
(1)若某考生按照“
”模式隨機選科,求選出的六科中含有“語文,數(shù)學(xué),外語,物理,化學(xué)”的概率.
(2)新冠疫情期間,為積極應(yīng)對“
”新高考改革,某地高一年級積極開展線上教學(xué)活動.教育部門為了解線上教學(xué)效果,從當(dāng)?shù)夭煌瑢哟蔚膶W(xué)校中抽取高一學(xué)生2500名參加語數(shù)外的網(wǎng)絡(luò)測試,并給前400名頒發(fā)榮譽證書,假設(shè)該次網(wǎng)絡(luò)測試成績服從正態(tài)分布,且滿分為450分.
①考生甲得知他的成績?yōu)?/span>270分,考試后不久了解到如下情況:“此次測試平均成績?yōu)?/span>171分,351分以上共有57人”,請用你所學(xué)的統(tǒng)計知識估計甲能否獲得榮譽證書,并說明理由;
②考生丙得知他的實際成績?yōu)?/span>430分,而考生乙告訴考生丙:“這次測試平均成績?yōu)?/span>201分,351分以上共有57人”,請結(jié)合統(tǒng)計學(xué)知識幫助丙同學(xué)辨別乙同學(xué)信息的真?zhèn),并說明理由.
附:
;
;
.
【答案】(1)
;(2)①能,理由見解析;②無法辨別乙同學(xué)信息真假,理由見解析
【解析】
(1)已經(jīng)選出五科,再從剩余三個科目中選1個科目的方法為
,計算出從物理、歷史里選一門,生物、化學(xué)、思想政治、地理4門中選2門的總方案數(shù),即可得其概率.
(2)①由題意可知,
,而
,結(jié)合
原則可求得
的值,結(jié)合獲獎概率,并求得
,比較后可求得獲獎的最低成績,即可由甲的成績得知甲能否獲得榮譽證書.
②假設(shè)乙所說為真,求得
,進而求得
的值,從而確定
的值,即可確定
的概率.比較后即可知該事件為小概率事件,而丙已經(jīng)有這個成績,因而可判斷乙所說為假.
解:(1)設(shè)事件A:選出的六科中含有“語文,數(shù)學(xué),外語,物理,化學(xué)”,
則![]()
(2)設(shè)此次網(wǎng)絡(luò)測試的成績記為X,則![]()
①由題知
,因為
,且![]()
所以
,而
,
且![]()
所以前400名的成績的最低分高于
分
而
,所以甲同學(xué)能獲得榮譽證書
②假設(shè)乙所說的為真,則![]()
,
而
,所以
,從而
,
而![]()
答案示例1:可以認為乙同學(xué)信息為假,理由如下:
事件“
”為小概率事件,即“丙同學(xué)的成績?yōu)?/span>430分”是小概率事件,可認為其不可能發(fā)生,但卻又發(fā)生了,所以可認為乙同學(xué)信息為假;
答案示例2:無法辨別乙同學(xué)信息真假,理由如下:
事件“
”即“丙同學(xué)的成績?yōu)?/span>430分”發(fā)生的概率雖然很小,一般不容易發(fā)生,但是還是有可能發(fā)生的,所以無法辨別乙同學(xué)信息真假.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,
為圓錐的頂點,
是圓錐底面的圓心,
為底面直徑,
.
是底面的內(nèi)接正三角形,
為
上一點,
.
![]()
(1)證明:
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
中,底面ABCD為矩形,點E在PA線段上,PC
平面BDE
![]()
(1)請確定點E的位置;并說明理由.
(2)若
是等邊三角形,
, 平面PAD
平面ABCD,四棱錐
的體積為
,求點E到平面PCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,由直三棱柱
和四棱錐
構(gòu)成的幾何體中,
,平面
平面![]()
(I)求證:
;
(II)若M為
中點,求證:
平面
;
(III)在線段BC上(含端點)是否存在點P,使直線DP與平面
所成的角為
?若存在,求
得值,若不存在,說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
是定義在R上的奇函數(shù),當(dāng)
時,
,則下列命題正確的是( )
A.當(dāng)
時,![]()
B.函數(shù)
有3個零點
C.
的解集為![]()
D.
,都有![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(1)當(dāng)
時,求函數(shù)
的極值;
(2)若函數(shù)
在區(qū)間
內(nèi)存在零點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1(﹣c,0),F2(c,0)分別為雙曲線C:
1(a>0,b>0)的左、右焦點,直線l:
1與C交于M,N兩點,線段MN的垂直平分線與x軸交于T(﹣5c,0),則C的離心率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c,d∈R,矩陣A=
的逆矩陣A-1=
.若曲線C在矩陣A對應(yīng)的變換作用下得到直線y=2x+1,求曲線C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐
,平面
⊥平面
,
是以
為斜邊的等腰直角三角形,
,
,
,
為
的中點.
![]()
(1)證明:
;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com