已知一條曲線C在y軸右邊,C上每一點到點F(1,0)的距離減去它到y(tǒng)軸距離的差都是1
(1)求曲線C的方程.
(2)是否存在正數(shù)m,對于過點M(m,0)且與曲線C有兩個交點A,B的任一直線,都有
?若存在,求出m的取值范圍,若不存在,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分)
如圖,橢圓C:
+
=1(a>b>0)的焦點F1,F(xiàn)2和短軸的一個端點A構(gòu)成等邊三角形,
點(
,
)在橢圓C上,直線l為橢圓C的左準線.
(1) 求橢圓C的方程;
(2) 點P是橢圓C上的動點,PQ ⊥l,垂足為Q.
是否存在點P,使得△F1PQ為等腰三角形?
若存在,求出點P的坐標;若不存在,說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓![]()
的離心率為
,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知動直線
與橢圓
相交于
、
兩點.
①若線段
中點的橫坐標為
,求斜率
的值;
②已知點
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓
為正整數(shù),
為常數(shù).曲線
在點
處的切線方程為
.
(Ⅰ)求函數(shù)
的最大值;
(Ⅱ)證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)
如圖,拋物線
的焦點到準線的距離與橢圓
的長半軸相等,設(shè)橢圓的右頂點為
在第一象限的交點為
為坐標原點,且
的面積為![]()
![]()
(1)求橢圓
的標準方程;
(2)過點
作直線
交
于
兩點,射線
分別交
于
兩點.
(I)求證:
點在以
為直徑的圓的內(nèi)部;
(II)記
的面積分別為
,問是否存在直線
,使得
?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖2,建立平面直角坐標系
,
軸在地平面上,
軸垂直于地平面,單位長度為1千米.某炮位于坐標原點.已知炮彈發(fā)射后的軌跡在方程
表示的曲線上,其中
與發(fā)射方向有關(guān).炮的射程是指炮彈落地點的橫坐標.
(1)求炮的最大射程;
(2)設(shè)在第一象限有一飛行物(忽略其大。,其飛行高度為3.2千米,試問它的橫坐標
不超過多少時,炮彈可以擊中它?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的方程為
它的一個焦點與拋物線
的焦點重合,離心率
過橢圓的右焦點F作與坐標軸不垂直的直線
交橢圓于A、B兩點.(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)點
求直線
的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓
的一個頂點與拋物線
的焦點重合,
分別是橢圓的左、右焦點,且離心率
且過橢圓右焦點
的直線
與橢圓C交于
兩點.
(1)求橢圓C的方程;
(2)是否存在直線
,使得
.若存在,求出直線
的方程;若不存在,說明理由.
(3)若AB是橢圓C經(jīng)過原點O的弦, MN
AB,求證:
為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
22.(本題滿分15分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點
到其準線的距離等于5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓
交于A、C、D、B四點,試證明
為定值;
|
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com