(8分)如圖,四棱錐
底面是正方形且四個(gè)頂點(diǎn)
在球
的同一個(gè)大圓(球面被過球心的平面截得的圓叫做大圓)上,點(diǎn)
在球面
上且
面
,且已知
。
(1)求球
的體積;
(2)設(shè)
為
中點(diǎn),求異面直線
與
所成角的余弦值。![]()
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
( 14分)如圖,已知矩形ABCD中,AB=10,BC=6,將矩形沿對(duì)角線BD把△ABD折起,使A移到
點(diǎn),且
在平面BCD上的射影O恰好在CD上.
(Ⅰ)求證:
;
(Ⅱ)求證:平面
平面
;
(Ⅲ)求三棱錐
的體積. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題
滿分14分)
如圖所示,在邊長為12的正方形
中,點(diǎn)
在線
段
上,且
,
,作
//
,分別交
,
于點(diǎn)
,
,作
//
,分別交
,
于點(diǎn)
,
,將該正方形沿
,
折疊,使得
與
重合,構(gòu)成如圖2所示的三棱柱
.![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求四棱錐
的體積;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)
如圖,在六面體
中,平面
∥平面
,
⊥平面
,
,
,
∥
.且
,
.
(1)求證:
∥平面
;
(2)求二面角
的余弦值;
(3) 求五面體
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
如圖6所示,等腰三角形△ABC的底邊AB=
,高CD=3.點(diǎn)E是線段BD上異于B、D的動(dòng)點(diǎn).點(diǎn)F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE.
記BE=x,V(x)表示四棱錐P-ACFE的體積。
(1)求V(x)的表達(dá)式;
(2)當(dāng)x為何值時(shí),V(x)取得最大值?
(3)當(dāng)V(x)取得最大值時(shí),求異面直線
AC與PF所成角的余弦值。![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)
如圖
為正三角形,EC![]()
平面ABC,BD
CE,且CE=CA=2BD=a,M是EA的中點(diǎn).(1)求證:(1) DM
平面ABC;(2)CM
AD;(3)求這個(gè)多面體的體積.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
一個(gè)多面體的直觀圖和三視圖如圖所示
(Ⅰ) 求證:
;
(Ⅱ) 若
為
上一點(diǎn),且
,求二面角
的大。![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)m,n是兩條不同的直線,
、
、
是三個(gè)不同的平面,給出下列命題,正確的是( ).
| A.若 | B.若 |
| C.若 | D.若 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(
本題滿分12分)
圓臺(tái)的兩底面半徑分別是5cm和10cm,高為8cm, 有一個(gè)過圓臺(tái)兩母線的截面,且上、下底面中心到截面與底面的交線的距離
分別為3cm和6cm,求截面面積. 圓臺(tái)的側(cè)面積和體積.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com