已知
,函數(shù)
.
(1)若函數(shù)
在區(qū)間
內(nèi)是減函數(shù),求實數(shù)
的取值范圍;
(2)求函數(shù)
在區(qū)間
上的最小值
;
(1)
(2)![]()
解析試題分析:解:(1)∵
,令
得
,
當(dāng)
時,
在
遞減,不合舍去
當(dāng)
時,
在
遞減,![]()
(2)∵
,令
得![]()
①若
,則當(dāng)
時,
,所以
在區(qū)間
上是增函數(shù),
所以
.
②若
,即
,則當(dāng)
時,
,所以
在區(qū)間
上是增函數(shù),所以
.
③若
,即
,則當(dāng)
時,
;當(dāng)
時,
.所以
在區(qū)間
上是減函數(shù),在區(qū)間
上是增函數(shù).
所以
.
④若
,即
,則當(dāng)
時,
,
所以
在區(qū)間
上是減函數(shù).所以
.
綜上所述,函數(shù)
在區(qū)間
的最小值:![]()
考點:導(dǎo)數(shù)的應(yīng)用
點評:導(dǎo)數(shù)常應(yīng)用于求曲線的切線方程、求函數(shù)的最值與單調(diào)區(qū)間、證明不等式和解不等式中參數(shù)的取值范圍等。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1) 試判斷函數(shù)
在![]()
上單調(diào)性并證明你的結(jié)論;
(2) 若
恒成立, 求整數(shù)
的最大值;
(3) 求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)判斷
的奇偶性;
(2)確定函數(shù)
在
上是增函數(shù)還是減函數(shù)?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)已知函數(shù)y=ln(-x2+x-a)的定義域為(-2,3),求實數(shù)a的取值范圍;
(2)已知函數(shù)y=ln(-x2+x-a)在(-2,3)上有意義,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
.
(Ⅰ) 求函數(shù)
在點
處的切線方程;
(Ⅱ) 若函數(shù)
與
在區(qū)間
上均為增函數(shù),求
的取值范圍;
(Ⅲ) 若方程
有唯一解,試求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知y=f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時,f(x)=2x+x2.
(1)求x>0時,f(x)的解析式;
(2)若關(guān)于x的方程f(x)=2a2+a有三個不同的解,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知f(x)的定義域為(0,+∞),且滿足f(2)=1,f(xy)=f(x)+f(y),又當(dāng)x2>x1>0時,f(x2)>f(x1).
(1)求f(1)、f(4)、f(8)的值;
(2)若有f(x)+f(x-2)≤3成立,求x的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com