【題目】己知函數(shù)![]()
![]()
(1)若
,用“五點(diǎn)法”在給定的坐標(biāo)系中,畫出函數(shù)
在
上的圖象.
(2)若
偶函數(shù),求
:
(3)在(2)的前提下,將函數(shù)
的圖象向右平移
個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的
倍,縱坐標(biāo)不變,再向上平移一個(gè)單位得到函數(shù)
的圖象,求
的對(duì)稱中心.
【答案】
見解析 ![]()
![]()
![]()
【解析】
(1)根據(jù)題意,代入?yún)?shù)值,五點(diǎn)法作圖;
(2)根據(jù)偶函數(shù)性質(zhì),求參數(shù)值;
(3)根據(jù)三角函數(shù)
的平移伸縮變換,求解
解析式,再求對(duì)稱中心.
(1)當(dāng)
時(shí),![]()
列表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
函數(shù)
在區(qū)間
上的圖像是:
![]()
(2)![]()
因?yàn)?/span>
為偶函數(shù),則
軸是
圖像的對(duì)稱軸,則![]()
又因?yàn)?/span>
,故
,
(3)由(2)可知
,
當(dāng)
的圖像向右平移
個(gè)單位,得到
的圖像
將橫坐標(biāo)變?yōu)樵瓉淼?/span>
倍,再向上平移
個(gè)單位得到![]()
所以![]()
當(dāng)
,即
時(shí)
因此
的對(duì)稱中心為![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定于符號(hào)函數(shù)
,已知
,
,
(1)求
關(guān)于
的表達(dá)式,并求
的最小值;
(2)當(dāng)
時(shí),函數(shù)
在
上有唯一零點(diǎn),求
的取值范圍;
(3)已知存在
,使得
對(duì)任意
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓和雙曲線有共同焦點(diǎn)
,
是它們的一個(gè)交點(diǎn),
,記橢圓和雙曲線的離心率分別
,則
的最小值是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
為自然對(duì)數(shù)的底數(shù),
.
(1)試討論函數(shù)
的單調(diào)性;
(2)當(dāng)
時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的左,右焦點(diǎn)分別為
,
,離心率為
,
是橢圓
上的動(dòng)點(diǎn),當(dāng)
時(shí),
的面積為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)
的直線交橢圓
于
,
兩點(diǎn),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題,則假命題的個(gè)數(shù)是( )
①若
,則“
”的充要條件是“
”;
②給定兩個(gè)命題
,
,
是
的必要不充分條件,則
是
的充分不必要條件;
③設(shè)
,若
,則
或
;
④命題“若
,則方程
有實(shí)數(shù)根”的否命題.( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
,在一個(gè)周期內(nèi)的圖象如下圖所示.
![]()
(1)求函數(shù)的解析式;
(2)設(shè)
,且方程
有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍和這兩個(gè)根的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】到2020年,我國將全面建立起新的高考制度,新高考采用
模式,其中語文、數(shù)學(xué)、英語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣、愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門(6選3)參加考試,滿分各100分.為了順利迎接新高考改革,某學(xué)校采用分層抽樣的方法從高一年級(jí)1000名(其中男生550名,女生450名)學(xué)生中抽取了
名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的
名學(xué)生中有女生45名,求
的值及抽取的男生的人數(shù).
(2)該校計(jì)劃在高一上學(xué)期開設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的
名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目,且只能選擇一個(gè)科目),得到如下
列聯(lián)表.
選擇“物理” | 選擇“地理” | 總計(jì) | |
男生 | 10 | ||
女生 | 25 | ||
總計(jì) |
(i)請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有
以上的把握認(rèn)為選擇科目與性別有關(guān)系.
(ii)在抽取的選擇“地理”的學(xué)生中按性別分層抽樣抽取6名,再從這6名學(xué)生中抽取2名,求這2名中至少有1名男生的概率.
附:
,其中
.
| 0.05 | 0.01 |
| 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)若
,試討論函數(shù)
的單調(diào)性;
(Ⅱ)設(shè)
,當(dāng)
對(duì)任意的
恒成立時(shí),求函數(shù)
的最大值的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com