【題目】給出下列命題,則假命題的個數(shù)是( )
①若
,則“
”的充要條件是“
”;
②給定兩個命題
,
,
是
的必要不充分條件,則
是
的充分不必要條件;
③設
,若
,則
或
;
④命題“若
,則方程
有實數(shù)根”的否命題.( )
A.0B.1C.2D.3
科目:高中數(shù)學 來源: 題型:
【題目】(江蘇省南京師大附中2018屆高三高考考前模擬考試數(shù)學試題)已知函數(shù)f(x)=lnx-ax+a,a∈R.
(1)若a=1,求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)有兩個零點,求a的范圍;
(3)對于曲線y=f(x)上的兩個不同的點P(x1,f(x1)),Q(x2,f(x2)),記直線PQ的斜率為k,若y=f(x)的導函數(shù)為f ′(x),證明:f ′(
)<k.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】受日月引力影響,海水會發(fā)生漲退潮現(xiàn)象.通常情況下,船在漲潮時駛進港口,退潮時離開港口.某港口在某季節(jié)每天港口水位的深度
(米)是時間
(
,單位:小時,
表示0:00—零時)的函數(shù),其函數(shù)關系式為![]()
![]()
.已知一天中該港口水位的深度變化有如下規(guī)律:出現(xiàn)相鄰兩次最高水位的深度的時間差為12小時,最高水位的深度為12米,最低水位的深度為6米,每天13:00時港口水位的深度恰為10.5米.
(1)試求函數(shù)
的表達式;
(2)某貨船的吃水深度(船底與水面的距離)為7米,安全條例規(guī)定船舶航行時船底與海底的距離不小于3.5米是安全的,問該船在當天的什么時間段能夠安全進港?若該船欲于當天安全離港,則它最遲應在當天幾點以前離開港口?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知函數(shù)![]()
![]()
(1)若
,用“五點法”在給定的坐標系中,畫出函數(shù)
在
上的圖象.
(2)若
偶函數(shù),求
:
(3)在(2)的前提下,將函數(shù)
的圖象向右平移
個單位后,再將得到的圖象上各點的橫坐標伸長為原來的
倍,縱坐標不變,再向上平移一個單位得到函數(shù)
的圖象,求
的對稱中心.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司的班車在8:00準時發(fā)車,小田與小方均在7:40至8:00之間到達發(fā)車點乘坐班車,且到達發(fā)車點的時刻是隨機的,則小田比小方至少早5分鐘到達發(fā)車點的概率為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,直線
的的參數(shù)方程為
(其中
為參數(shù)),以坐標原點
為極點,
軸的正半軸為極軸的極坐標系中,點
的極坐標為
,直線
經(jīng)過點
.曲線
的極坐標方程為
.
(1)求直線
的普通方程與曲線
的直角坐標方程;
(2)過點
作直線
的垂線交曲線
于
兩點(
在
軸上方),求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E:
(a﹥b﹥0)的一個焦點與短軸的兩個端點是正三角形的三個頂點,點
在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設不過原點O且斜率為
的直線l與橢圓E交于不同的兩點A,B,線段AB的中點為M,直線OM與橢圓E交于C,D,證明:|MA|·|MB|=|MC|·|MD|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面四個關于圓錐曲線的命題中,其中真命題為( )
A.設A、B為兩個定點,K為非零常數(shù),若
,則動點P的軌跡是雙曲線
B.方程
的兩根可分別作為橢圓和雙曲線的離心率
C.雙曲線
與橢圓
有相同的焦點
D.已知拋物線
,以過焦點的一條弦AB為直徑作圓,則此圓與準線相切
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com