【題目】已知橢圓系方程
:
(
,
),
是橢圓
的焦點,
是橢圓
上一點,且
.
![]()
(1)求
的離心率并求出
的方程;
(2)
為橢圓
上任意一點,過
且與橢圓
相切的直線
與橢圓
交于
,
兩點,點
關(guān)于原點的對稱點為
,求證:
的面積為定值,并求出這個定值.
【答案】(1)
;(2)
.
【解析】試題分析:(1)由橢圓
的方程為:
,由
,∴
, 可得
的值,得到橢圓方程;
(2)由距離公式得到點
到直線
的距離
,由弦長公式得到
的面積為
,即可得到面積為定值,得到證明.
試題解析:
(1)橢圓
的方程為:
:
即: ![]()
∵
.∴
,又
![]()
即:
又![]()
,
∴橢圓
的方程為:
∴
,∴
∴橢圓
的方程為:
; ![]()
(2)解法(一):設(shè)
,則![]()
當直線l斜率存在時,設(shè)l為:
,
則
,由
聯(lián)立得: ![]()
由
得
到直線
的距離
同理,由
聯(lián)立得: ![]()
, ![]()
![]()
![]()
當直線l斜率不存在時,易知
,
的面積為定值
解法(二):設(shè)
,由(1)得
為:
,
∴過
且與橢圓
相切的直線l:
.且![]()
點
關(guān)于原點對稱點
,點
到直線l的距離![]()
設(shè)
, ![]()
由
得
,
,∴ ![]()
![]()
∴
的面積為
![]()
(定值)
當
時,易知
,
綜上:
的面積為定值
.
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如下表:
![]()
(1)根據(jù)表中數(shù)據(jù),建立
關(guān)于
的線性回歸方程
;
(2)若近幾年該農(nóng)產(chǎn)品每千克的價格
(單位:元)與年產(chǎn)量
滿足的函數(shù)關(guān)系式為
,且每年該農(nóng)產(chǎn)品都能售完.
①根據(jù)(1)中所建立的回歸方程預測該地區(qū)
年該農(nóng)產(chǎn)品的產(chǎn)量;
②當
為何值時,銷售額
最大?
附:對于一組數(shù)據(jù)
,其回歸直線
的斜率和截距的最小二乘估計分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有
六支足球隊參加單循環(huán)比賽(即任意兩支球隊只踢一場比賽),第一周的比賽中
,各踢了
場,
各踢了
場,
踢了
場,且
隊與
隊未踢過,
隊與
隊也未踢過,則在第一周的比賽中,
隊踢的比賽的場數(shù)是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2018河南豫南九校高三下學期第一次聯(lián)考】設(shè)函數(shù)
.
(I)當
時,
恒成立,求
的范圍;
(II)若
在
處的切線為
,且方程
恰有兩解,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有甲、乙兩個桔柚(球形水果)種植基地,已知所有采摘的桔柚的直徑都在
范圍內(nèi)(單位:毫米,以下同),按規(guī)定直徑在
內(nèi)為優(yōu)質(zhì)品,現(xiàn)從甲、乙兩基地所采摘的桔柚中各隨機抽取500個,測量這些桔柚的直徑,所得數(shù)據(jù)整理如下:
![]()
(1)根據(jù)以上統(tǒng)計數(shù)據(jù)完成下面
列聯(lián)表,并回答是否有
以上的把握認為
“桔柚直徑與所在基地有關(guān)”?
![]()
(2)求優(yōu)質(zhì)品率較高的基地的500個桔柚直徑的樣本平均數(shù)
(同一組數(shù)據(jù)用該區(qū)間的中點值作代表):
(3)經(jīng)計算,甲基地的500個桔柚直徑的樣本方差
,乙基地的500個桔柚直徑的樣本方差
,,并且可認為優(yōu)質(zhì)品率較高的基地采摘的桔柚直徑
服從正態(tài)分布
,其中
近似為樣本平均數(shù)
,
近似為樣本方差
.由優(yōu)質(zhì)品率較高的種植基地的抽樣數(shù)據(jù),估計該基地采摘的桔柚中,直徑不低于86.78亳米的桔柚在總體中所占的比例.
附:
,
.
![]()
若
,則
.
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市為鼓勵人們綠色出行,乘坐地鐵,地鐵公司決定按照乘客經(jīng)過地鐵站的數(shù)量實施分段優(yōu)惠政策,不超過
站的地鐵票價如下表:
乘坐站數(shù) |
|
|
|
票價(元) |
|
|
|
現(xiàn)有甲、乙兩位乘客同時從起點乘坐同一輛地鐵,已知他們乘坐地鐵都不超過
站,且他們各自在每個站下車的可能性是相同的.
(1)若甲、乙兩人共付費
元,則甲、乙下車方案共有多少種?
(2)若甲、乙兩人共付費
元,求甲比乙先到達目的地的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線
在第一象限內(nèi)的點
到焦點
的距離為
.
(1)若
,過點
,
的直線
與拋物線相交于另一點
,求
的值;
(2)若直線
與拋物線
相交于
兩點,與圓
相交于
兩點,
為坐標原點,
,試問:是否存在實數(shù)
,使得
的長為定值?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-5:不等式選講設(shè)函數(shù)![]()
(1)當
時,解不等式:
;
(2)若關(guān)于x的不等式f(x)≤4的解集為[﹣1,7],且兩正數(shù)s和t滿足
,求證:
.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com