【題目】函數(shù)
,
,已知曲線
與
在原點(diǎn)處的切線相同.
(1)求
的單調(diào)區(qū)間;
(2)當(dāng)
時(shí),
恒成立,求
的取值范圍.
【答案】(1)
的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
;(2)
.
【解析】
試題分析:(1)借助條件確定
的表達(dá)式,然后求導(dǎo),解不等式得單調(diào)區(qū)間;(2)構(gòu)建新函數(shù),借助最值建立關(guān)于
的不等關(guān)系.
試題解析:解:(1)∵
(
),
,
依題意,
,解得
,
∴
,
當(dāng)
時(shí),
;當(dāng)
時(shí),
,
故
的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
.
(2)令
,
由(1)知:
,∴
,即
,
∴
.
(i)若
,則![]()
∴
在
上是增函數(shù),
∴
,
∴
成立.
(ii)若
,由(1)知
,則
,
由(i)知:
,
∴
成立.
(iii)若
,則
,則
,
顯然
在
上單調(diào)遞增,
又
,
,
∴
在
上存在唯一零點(diǎn)
,
當(dāng)
時(shí),
,所以
在
上單調(diào)遞減,
從而
,即
,
∴
在
上單調(diào)遞減,
從而當(dāng)
時(shí),
,即
,不合題意.
綜上,實(shí)數(shù)
的取值范圍為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線
的方程為
,點(diǎn)
的坐標(biāo)為
.
(Ⅰ)求過(guò)
點(diǎn)且與直線
平行的直線方程;
(Ⅱ)求過(guò)
點(diǎn)且與直線
垂直的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
為非負(fù)實(shí)數(shù),函數(shù)
.
(1)當(dāng)
時(shí),求
的單調(diào)區(qū)間;
(2)討論函數(shù)
零點(diǎn)的個(gè)數(shù),并求出零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)設(shè)函數(shù)
,求函數(shù)
的單調(diào)區(qū)間;
(2)若在區(qū)間
上不存在
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(改編)已知數(shù)列
滿(mǎn)足
,
,
.
(1)若
,
,
,求實(shí)數(shù)
的取值范圍;
(2)設(shè)數(shù)列
滿(mǎn)足:
,
,設(shè)
,若
,
,求
的取值范圍;
(3)若
成公比
的等比數(shù)列,且
,求正整數(shù)
的最大值,以及
取最大值時(shí)相應(yīng)數(shù)列
的公比
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓M過(guò)兩點(diǎn)A(1,﹣1),B(﹣1,1),且圓心M在直線x+y﹣2=0上.
(1)求圓M的方程.
(2)設(shè)P是直線3x+4y+8=0上的動(dòng)點(diǎn),PC、PD是圓M的兩條切線,C、D為切點(diǎn),求四邊形PCMD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求滿(mǎn)足
的
的取值;
(2)若函數(shù)
是定義在
上的奇函數(shù)
①存在
,不等式
有解,求
的取值范圍;
②若函數(shù)
滿(mǎn)足
,若對(duì)任意
,不等式
恒成立,求實(shí)數(shù)
的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com