已知
,
,
在
處的切線方程為![]()
(Ⅰ)求
的單調(diào)區(qū)間與極值;
(Ⅱ)求
的解析式;
(III)當
時,
恒成立,求
的取值范圍.
(Ⅰ)
的增區(qū)間為
,減區(qū)間為
,
.
(Ⅱ)
,(III)
.
解析試題分析:利用導數(shù)求函數(shù)的單調(diào)性、極值,根據(jù)導數(shù)的幾何意義求函數(shù)的解析式;利用導數(shù)判定最值的方法求參數(shù)的取值范圍.
試題解析:(Ⅰ)令
,得
, 1分
∴當
時,
;當
時,
.
∴
的增區(qū)間為
,減區(qū)間為
,
, 3分
(Ⅱ)
,
,所以
.
又![]()
∴
,∴![]()
所以
6分
(III)當
時,
,令![]()
當
時,
矛盾, 8分
首先證明
在
恒成立.
令
,
,故
為
上的減函數(shù),
,故
10分
由(Ⅰ)可知
故當
時,
綜上
12分
考點:導數(shù)的應用,導數(shù)的幾何意義,導數(shù)最值的應用.
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,將一矩形花壇
擴建成一個更大的矩形花壇
,要求
在
的延長線上,
在
的延長線上,且對角線
過
點.已知
米,
米。![]()
(1)設
(單位:米),要使花壇
的面積大于32平方米,求
的取值范圍;
(2)若
(單位:米),則當
,
的長度分別是多少時,花壇
的面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分15分)已知函數(shù)
.
(1)當
時,求
在
最小值;
(2)若
存在單調(diào)遞減區(qū)間,求
的取值范圍;
(3)求證:
(
).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=
x
-ax+(a-1)
,
.
(1)討論函數(shù)
的單調(diào)性;(2)若
,設
,
(。┣笞Cg(x)為單調(diào)遞增函數(shù);
(ⅱ)求證對任意x
,x![]()
![]()
,x![]()
x
,有
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知
是實數(shù),函數(shù)
,
和
,分別是
的導函數(shù),若
在區(qū)間
上恒成立,則稱
和
在區(qū)間
上單調(diào)性一致.
(Ⅰ)設
,若函數(shù)
和
在區(qū)間
上單調(diào)性一致,求實數(shù)
的取值范圍;
(Ⅱ)設
且
,若函數(shù)
和
在以
為端點的開區(qū)間上單調(diào)性一致,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)已知函數(shù)
.
(Ⅰ)當
時,求函數(shù)
的單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)
在區(qū)間
上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知函數(shù)f(x)=Asin(ωx+φ)(A>0,|φ|<
)圖像上一個最高點坐標為(2,2
),這個最高點到相鄰最低點的圖像與x軸交于點(5,0).![]()
(1)求f(x)的解析式;
(2)是否存在正整數(shù)m,使得將函數(shù)f(x)的圖像向右平移m個單位后得到一個偶函數(shù)的圖像?若存在,求m的最小值;若不存在,請說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com