已知函數(shù)
(
).
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的極值;
(Ⅱ)若對任意
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
(Ⅰ)![]()
;(Ⅱ)
.
解析試題分析:(Ⅰ)明確函數(shù)的解析式,然后利用導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,利用極值的定義確定函數(shù)的極值問題;(Ⅱ)利用等價(jià)轉(zhuǎn)化思想,將原不等式恒成立轉(zhuǎn)化為
恒成立,然后分類討論思想,即對
的正負(fù)討論和分離參數(shù)法,得到不同的不等式,進(jìn)而利用均值不等式探求
的取值范圍.
試題解析:(Ⅰ)當(dāng)
時(shí),
,
, 2分
令
,解得
.
當(dāng)
時(shí),得
或
;當(dāng)
時(shí),得
. 4分
當(dāng)
變化時(shí),
,
的變化情況如下表:
∴當(dāng)![]()
![]()
![]()
![]()
1 ![]()
![]()
+ 0 ![]()
0 + ![]()
![]()
極大 ![]()
極小 ![]()
時(shí),函數(shù)
有極大值,
; 5分
當(dāng)
時(shí),函數(shù)![]()
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
,
,
在
處的切線方程為![]()
(Ⅰ)求
的單調(diào)區(qū)間與極值;
(Ⅱ)求
的解析式;
(III)當(dāng)
時(shí),
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中
為正實(shí)數(shù),
是
的一個(gè)極值點(diǎn).
(Ⅰ)求
的值;
(Ⅱ)當(dāng)
時(shí),求函數(shù)
在
上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(
,
為常數(shù))
(Ⅰ)討論
的單調(diào)性;
(Ⅱ)若
,證明:當(dāng)
時(shí),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,![]()
(Ⅰ)當(dāng)a=1時(shí),若曲線y=f(x)在點(diǎn)M (x0,f(x0))處的切線與曲線y=g(x)在點(diǎn)P (x0, g(x0))處的切線平行,求實(shí)數(shù)x0的值;
(II)若
(0,e],都有f(x)≥g(x)+
,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,且
在
處的切線方程為
.
(1)求
的解析式;
(2)證明:當(dāng)
時(shí),恒有
;
(3)證明:若
,
,且
,則
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
, 已知函數(shù)
(Ⅰ) 證明
在區(qū)間(-1,1)內(nèi)單調(diào)遞減, 在區(qū)間(1, + ∞)內(nèi)單調(diào)遞增;
(Ⅱ) 設(shè)曲線
在點(diǎn)
處的切線相互平行, 且
證明
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com