【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(2)在(1)的條件下,求證:
;
(3)當(dāng)
時(shí),求函數(shù)
在
上的最大值.
【答案】(1)
(2)見解析(3)最大值為
.
【解析】分析:(1)求出導(dǎo)數(shù),寫出切線方程
;
(2)利用導(dǎo)數(shù)求出
的最小值,由最小值>0得結(jié)論;
(3)求出導(dǎo)函數(shù)
,其零點(diǎn)為
,首先比較
與
的大小,得出
的單調(diào)性,然后再比較
大小得出最大值.
詳解:(1)當(dāng)
時(shí),
,所以
,
切線方程為
.
(2)由(1)知
,則
,當(dāng)時(shí)
時(shí),
;
當(dāng)
時(shí),
.
所以
在
上單調(diào)遞減,
在
上單調(diào)遞增,
當(dāng)
時(shí),函數(shù)最小值是
,因此
.
(3)
,令
,則
,當(dāng)
時(shí),設(shè)
,
因?yàn)?/span>
,所以
在
上單調(diào)遞增,
且
,所以
在
恒成立,即
,
當(dāng)
,當(dāng)
;所以
在
上單調(diào)遞減,
在
上單調(diào)遞增.所以
在
上的最大值等于
,
因?yàn)?/span>
,
設(shè)
,所以
.
由(2)
在
恒成立,所以
在
上單調(diào)遞增.
又因?yàn)?/span>
,所以
在
恒成立,即
,
因此當(dāng)
時(shí),
在
上的最大值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
=(cosα,sinα),
=(cosβ,sinβ),0<β<α<π.
(1)若|
﹣
|=
,求證:
⊥
;
(2)設(shè)
=(0,1),若
+
=
,求α,β的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1 , F2是雙曲線C:
(a>0,b>0)的兩個(gè)焦點(diǎn),P是C上一點(diǎn),若|PF1|+|PF2|=6a,且△PF1F2的最小內(nèi)角為30°,則C的離心率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,函數(shù)
,
.
(1)若
在
上單調(diào)遞增,求正數(shù)
的最大值;
(2)若函數(shù)
在
內(nèi)恰有一個(gè)零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,已知點(diǎn)A(5,-2),B(7,3),且邊AC的中點(diǎn)M在y軸上,邊BC的中點(diǎn)N在x軸上,求:
(1)頂點(diǎn)C的坐標(biāo);
(2)直線MN的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一個(gè)各面都涂了油漆的正方體,切割為125個(gè)同樣大小的小正方體,經(jīng)過攪拌后,從中隨機(jī)取一個(gè)小正方體,記它的涂漆面數(shù)為X,則X的均值E(X)=( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家研究過各種多邊形數(shù),如三角形數(shù)1,3,6,10,…,第n個(gè)三角形數(shù)為
.記第n個(gè)k邊形數(shù)為N(n,k)(k≥3),以下列出了部分k邊形數(shù)中第n個(gè)數(shù)的表達(dá)式:
三角形數(shù)
,
正方形數(shù)N(n,4)=n2 ,
五邊形數(shù)
,
六邊形數(shù)N(n,6)=2n2﹣n,
…
可以推測(cè)N(n,k)的表達(dá)式,由此計(jì)算N(10,24)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}滿足a1=2,an+1-an=3·22n-1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=nan,求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列
的前
項(xiàng)和為
,對(duì)任意
,點(diǎn)
都在函數(shù)
的圖象上.
(1)求數(shù)列
的通項(xiàng)公式;
(2)若數(shù)列
,求數(shù)列
的前
項(xiàng)和
;
(3)已知數(shù)列
滿足
,若對(duì)任意
,存在
使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com