【題目】二次函數(shù)
在區(qū)間
上有最大值4,最小值0.
(1)求函數(shù)
的解析式;
(2)設(shè)
,若
在
時(shí)恒成立,求
的范圍.
【答案】(1)g(x)=x2﹣2x+1;(2)[33,+∞)
【解析】
(1)根據(jù)二次函數(shù)的性質(zhì)討論對(duì)稱軸,即可求解最值,可得解析式.
(2)求解f(x)的解析式,f(x)﹣kx≤0在x∈[
,8],分離參數(shù)即可求解.
(1)g(x)=mx2﹣2mx+n+1(m>0)
其對(duì)稱軸x=1,x∈[0,3]上,
∴當(dāng)x=1時(shí),f(x)取得最小值為﹣m+n+1=0,…①.
當(dāng)x=3時(shí),f(x)取得最大值為3m+n+1=4,…②.
由①②解得:m=1,n=0
故得函數(shù)g(x)的解析式為:g(x)=x2﹣2x+1
(2)由f(x)![]()
當(dāng)x∈[
,8]時(shí),f(x)﹣kx≤0恒成立,
即x2﹣4x+1﹣kx2≤0恒成立,
∴x2﹣4x+1≤kx2
∴
k.
設(shè)
,則t∈[
,8]
可得:1﹣4t+t2=(t﹣2)2﹣3≤k.
當(dāng)t=8時(shí),(1﹣4t+t2)max=33
故得k的取值范圍是[33,+∞)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線
的極坐標(biāo)方程是
,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為
軸的正半軸,建立平面直角坐標(biāo)系,直線
的參數(shù)方程是
(
為參數(shù)).
(1)將曲線
的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若直線
與曲線
相交于
兩點(diǎn),且
,求直線
的傾斜角
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線
的左、右焦點(diǎn)分別為
、
,直線
過(guò)
且與雙曲線交于
、
兩點(diǎn).
(1)若
的傾斜角為
,
,
是等腰直角三角形,求雙曲線的標(biāo)準(zhǔn)方程;
(2)
,
,若
的斜率存在,且
,求
的斜率;
(3)證明:點(diǎn)
到已知雙曲線的兩條漸近線的距離的乘積為定值
是該點(diǎn)在已知雙曲線上的必要非充分條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
(1)求函數(shù)
的單調(diào)遞增區(qū)間;
(2)
內(nèi)角
的對(duì)邊分別為
,若
,
,
,且
,試求角
和角
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)角度看,
可以看成是以
為自變量的函數(shù)
,其定義域是
.
(1)證明:![]()
(2)試?yán)?/span>1的結(jié)論來(lái)證明:當(dāng)
為偶數(shù)時(shí),
的展開(kāi)式最中間一項(xiàng)的二項(xiàng)式系數(shù)最大;當(dāng)
為奇數(shù)時(shí)
的展開(kāi)式最中間兩項(xiàng)的二項(xiàng)式系數(shù)相等且最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,其左、右焦點(diǎn)分別為
,點(diǎn)
是坐標(biāo)平面內(nèi)一點(diǎn),且
,
(
為坐標(biāo)原點(diǎn)).
(1)求橢圓
的方程;
(2)過(guò)點(diǎn)
且斜率為
的動(dòng)直線
交橢圓于
兩點(diǎn),在
軸上是否存在定點(diǎn)
,使以
為直徑的圓恒過(guò)該點(diǎn)?若存在,求出點(diǎn)
的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
且
)是定義在
上的奇函數(shù).
(1)求
的值;
(2)求函數(shù)
的值域;
(3)當(dāng)
時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐
中,
.
(1)設(shè)
與
相交于點(diǎn)
,
,且
平面
,求實(shí)數(shù)
的值;
(2)若
且
, 求二面角
的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程
在
上有兩個(gè)不等的實(shí)數(shù)根,則實(shí)數(shù)
的取值范圍為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com