分析 (1)根據(jù)題意,c1=b1=1,c2=a1=3,再根據(jù)S3可以計(jì)算出b2=$\frac{1}{4}$,從而得出等比數(shù)列{bn}的公比,最后根據(jù)等差數(shù)列和等比數(shù)列的通項(xiàng)公式,求出數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)求得數(shù)列{Tn}的通項(xiàng)公式,可得T1>T2>T3>T4>T5>15>T6<T7<T8<…,可知滿足Tn<15的項(xiàng)即輸出項(xiàng)只有T6=14.96.T6恰好是{Tn}中的最小項(xiàng);
(3)分析數(shù)列{Tn}的各項(xiàng),輸出項(xiàng)的和為:T4+T5+T6+T7+T8+…+T24,由等差數(shù)列、等比數(shù)列的求和公式即可求值.
解答 解:(1)由題意,b1=1,a1=3,
S3=b1+a1+b2=$\frac{17}{4}$,故b2=$\frac{1}{4}$,
所以an=2n+1,bn=($\frac{1}{4}$)n-1,
(2)∵Tn=2012•($\frac{1}{4}$)n-1+2n+1,
∴T1>T2>T3>T4>T5>15>T6<T7<T8<…,
所以,由程序框圖可知滿足條件Tn<15的項(xiàng)即輸出項(xiàng)只有T6=14.96.
T6恰好是{Tn}中的最小項(xiàng).
(3)∵T1>T2>T3>50>T4>T5>T6<T7<T8<…<T24<50<T25<T26<…,
∴輸出項(xiàng)的和=T4+T5+T6+T7+T8+…+T24=2012$•\frac{(\frac{1}{4})^{3}•[1-(\frac{1}{4})^{21}]}{1-\frac{1}{4}}$+$\frac{21•(9+49)}{2}$=$\frac{503}{12}•[1-(\frac{1}{4})^{21}]+609$.
點(diǎn)評(píng) 本題考查了數(shù)列與不等式的綜合,以及數(shù)列的函數(shù)特征,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于難題.深刻理解等差數(shù)列與等比數(shù)列的區(qū)別與聯(lián)系,準(zhǔn)確運(yùn)用通項(xiàng)公式,研究數(shù)列的單調(diào)性,是解決本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (1,0) | B. | ($\frac{4}{3}$,0) | C. | ($\frac{5}{3}$,0) | D. | (2,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com