欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

5.如圖,在△OAB中,C、D分別為AB、OB的中點(diǎn),E為OA上離點(diǎn)O最近的四等分點(diǎn),F(xiàn)為CE與AD的交點(diǎn),若$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,則$\overrightarrow{OF}$=( 。
A.$\frac{2}{5}$$\overrightarrow{a}$+$\frac{3}{10}$$\overrightarrow$B.$\frac{2}{5}$$\overrightarrow{a}$+$\frac{3}{5}$$\overrightarrow$C.$\frac{1}{5}$$\overrightarrow{a}$+$\frac{3}{10}$$\overrightarrow$D.$\frac{3}{5}$$\overrightarrow{a}$+$\frac{3}{10}$$\overrightarrow$

分析 首先根據(jù)在△OAB中,C、D分別為AB、OB的中點(diǎn),E為OA上離點(diǎn)O最近的四等分點(diǎn),得到CD與OA的長度的關(guān)系,進(jìn)一步得到向量的線性關(guān)系,利用三角形法則運(yùn)算,得到所求.

解答 解:在△OAB中,C、D分別為AB、OB的中點(diǎn),E為OA上離點(diǎn)O最近的四等分點(diǎn),所以$\frac{CD}{AE}=\frac{\frac{1}{2}OA}{\frac{3}{4}OA}=\frac{2}{3}$,
所以$\overrightarrow{OF}=\overrightarrow{OE}+\overrightarrow{EF}$=$\frac{1}{4}\overrightarrow{OA}+\frac{3}{5}\overrightarrow{EC}$=$\frac{1}{4}\overrightarrow{OA}+\frac{3}{5}(\overrightarrow{EA}+\overrightarrow{AC})$=$\frac{1}{4}\overrightarrow{OA}+\frac{3}{5}(\frac{3}{4}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{AB})$=$\frac{1}{4}\overrightarrow{OA}+\frac{9}{20}\overrightarrow{OA}+\frac{3}{10}(\overrightarrow{OB}-\overrightarrow{OA})$=$\frac{2}{5}\overrightarrow{OA}+\frac{3}{10}\overrightarrow{OB}$=$\frac{2}{5}\overrightarrow{a}+\frac{3}{10}\overrightarrow$;
故選:A.

點(diǎn)評(píng) 本題考查了平面向量加減法的三角形法則的運(yùn)用;要充分利用C、D分別為AB、OB的中點(diǎn),E為OA上離點(diǎn)O最近的四等分點(diǎn),得到向量之間的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在平行四邊形ABCD中,AD=4,∠BAD=$\frac{π}{3}$,E為CD中點(diǎn),若$\overrightarrow{AC}•\overrightarrow{BE}$=4,則AB的長為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知$α∈(0,π),sinα+cosα=\frac{1}{5}$.
(Ⅰ) 求sinα-cosα的值;
(Ⅱ) 求$cos(2α+\frac{π}{3})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90°,∠EAC=60°,AB=AC=AE.
(Ⅰ)求平面EBD與平面ABC所成的銳二面角的余弦值;
(Ⅱ)直線EA與平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的參數(shù)方程為:$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=-2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$,曲線C2的極坐標(biāo)方程為:ρ2(1+sin2θ)=8,
(I)寫出C1的普通方程和C2的直角坐標(biāo)方程;
(II)若C1與C2交于兩點(diǎn)A,B,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c滿足b2=ac且sinAsinC=$\frac{3}{4}$,則角B=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知實(shí)數(shù)x,y滿足關(guān)系$\left\{\begin{array}{l}x+y≥2\\ x-y≤2\\ 1≤y≤3\end{array}\right.$,則$z=\frac{1}{2}x-y$的取值范圍為(-$\frac{7}{2}$,$-\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.射擊項(xiàng)目選拔賽,四人的平均成績和方差如下表所示:
  甲 乙 丙 丁
 平均環(huán)數(shù)$\overline{x}$ 8.3 8.8 8.8 8.7
 方差s2 3.5 3.6 2.2 5.4
從這四個(gè)人中選擇一人參加該射擊項(xiàng)目比賽,最佳人選是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某校一個(gè)校園景觀的主題為“托起明天的太陽”,其主體是一個(gè)半徑為5米的球體,需設(shè)計(jì)一個(gè)透明的支撐物將其托起,該支撐物為等邊圓柱形的側(cè)面,厚度忽略不計(jì).軸截面如圖所示,設(shè)∠OAB=α.(注:底面直徑和高相等的圓柱叫做等邊圓柱.)
(1)用α表示圓柱的高;
(2)實(shí)踐表明,當(dāng)球心O和圓柱底面圓周上的點(diǎn)D的距離達(dá)到最大時(shí),景觀的觀賞效果最佳,求此時(shí)α的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案