【題目】如圖所示,已知橢圓
過點
,離心率為
,左、右焦點分別為
、
,點
為直線
上且不在
軸上的任意一點,直線
和
與橢圓的交點分別為
、
和
、
,
為坐標原點.
![]()
(1)求橢圓的標準方程;
(2)設(shè)直線
、
的斜線分別為
、
.
(i)證明:
;
(ii)問直線
上是否存在點
,使得直線
、
、
、
的斜率
、
、
、
滿足
?若存在,求出所有滿足條件的點
的坐標;若不存在,說明理由.
【答案】(1)
;(2)(i)見解析;(ii)![]()
【解析】
(1)利用橢圓過已知點和離心率,聯(lián)立方程求得a和b,則橢圓的方程可得;
(2)(i)把直線PF1、PF2的方程聯(lián)立求得交點的坐標,代入直線x+y=2上,整理得
;
(ii)設(shè)出A,B,C,D的坐標,聯(lián)立直線PF1和橢圓的方程根據(jù)韋達定理表示出xA+xB和xAxB,進而可求得直線OA,OB斜率的和與CO,OD斜率的和,由kOA+kOB+kOC+kOD=0推斷出k1+k2=0或k1k2=1,分別討論求得p.
(1)∵橢圓過點
,
,∴
,故所求橢圓方程為
;
(2)(i)由于F1(﹣1,0)、F2(1,0),PF1,PF2的斜率分別是k1,k2,且點P不在x軸上,
所以k1≠k2,k1≠0,k2≠0.又直線PF1、PF2的方程分別為y=k1(x+1),y=k2(x﹣1),
聯(lián)立方程解得
,所以
,由于點P在直線x+y=2上,
所以
,故![]()
(ii)設(shè)A(xA,yA),B(xB,yB),C(xC,yC),D(xD,yD),聯(lián)立直線PF1和橢圓的方程得
,化簡得(2k12+1)x2+4k12x+2k12﹣2=0,
因此
,所以
,
同理可得:
,故由kOA+kOB+kOC+kOD=0得k1+k2=0或k1k2=1,
當k1+k2=0時,由(1)的結(jié)論可得k2=﹣2,解得P點的坐標為(0,2)
當k1k2=1時,由(1)的結(jié)論可得k2=3或k2=﹣1(舍去),
此時直線CD的方程為y=3(x﹣1)與x+y=2聯(lián)立得x=
,
,所以
,
綜上所述,滿足條件的點P的坐標分別為
,P(0,2).
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(
),曲線
在點
處的切線方程為
.
(1)求實數(shù)
的值,并求
的單調(diào)區(qū)間;
(2)試比較
與
的大小,并說明理由;
(3)求證:
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
:
的左、右焦點分別為
和
,離心率是
,直線
過點
交橢圓于
,
兩點,當直線
過點
時,
的周長為
.
(Ⅰ)求橢圓
的標準方程;
(Ⅱ)當直線
繞點
運動時,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一元線性同余方程組問題最早可見于中國南北朝時期(公元
世紀)的數(shù)學著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”問題,原文如下:有物不知數(shù),三三數(shù)之剩二,五五數(shù)之剩三,問物幾何?即,一個整數(shù)除以三余二,除以五余三,求這個整數(shù).設(shè)這個整數(shù)為
,當
時, 符合條件的
共有_____個.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系
中,設(shè)點
,直線
:
,點
在直線
上移動,
是線段
與
軸的交點,過
、
分別作直線
、
,使
,
,
.
![]()
(1)求動點
的軌跡
的方程;
(2)已知⊙
:
,過拋物線
上一點
作兩條直線與⊙
相切于
、
兩點,若直線
在
軸上的截距為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)
,已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)
在
上的最小值
;
(Ⅲ)若
, 求使方程
有唯一解的
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)
。
,
,
,
是
中的數(shù)所成的數(shù)列,它包含
的不以1結(jié)尾的任何排列,即對于
的四個數(shù)的任意一個不以1結(jié)尾的排列
,
,都有
,
,
,
,使得
,并且
,求這種數(shù)列的項數(shù)
的最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法:
①函數(shù)
的單調(diào)增區(qū)間是
;
②若函數(shù)
定義域為
且滿足
,則它的圖象關(guān)于
軸對稱;
③函數(shù)
的值域為
;
④函數(shù)
的圖象和直線
的公共點個數(shù)是
,則
的值可能是
;
⑤若函數(shù)
在
上有零點,則實數(shù)
的取值范圍是
.
其中正確的序號是_________.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com