欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.在△ABC中,內角A,B,C的對邊分別為a,b,c,若$\frac{tanA-tanB}{tanA+tanB}$=$\frac{c-b}{c}$,則這個三角形必含有( 。
A.90°的內角B.60°的內角C.45°的內角D.30°的內角

分析 先把已知條件等號左邊的分子分母利用同角三角函數(shù)間的基本關系切化弦后,分子分母都乘以cosAcosB后,利用兩角和與差的正弦函數(shù)公式化簡,右邊利用正弦定理化簡后,根據(jù)三角形的內角和定理及誘導公式,得到2cosA=1,然后在等號兩邊都乘以sinA后,利用二倍角的正弦函數(shù)公式及誘導公式化簡后,即可得到2A=B+C,由A+B+C=180°,即可解得:A=60°.

解答 解:$\frac{tanA-tanB}{tanA+tanB}$=$\frac{\frac{sinA}{cosA}-\frac{sinB}{cosB}}{\frac{sinA}{cosA}+\frac{sinB}{cosB}}$=$\frac{sinAcosB-cosAsinB}{sinAcosB+cosAsinB}$=$\frac{sin(A-B)}{sin(A+B)}$=$\frac{c-b}{c}$=$\frac{sinC-sinB}{sinC}$,
因為sin(A+B)=sin(π-C)=sinC,得到sin(A-B)=sinC-sinB,
即sinB=sin(A+B)-sin(A-B)=2cosAsinB,
得到2cosA=1,即2sinAcosA=sinA,即sin2A=sinA=sin(B+C),
由2A+B+C≠π,得到2A=B+C,
因為A+B+C=180°
所以可解得:A=60°
故選:B.

點評 此題考查學生靈活運用同角三角函數(shù)間的基本關系、兩角和與差的正弦函數(shù)公式以及誘導公式化簡求值,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.設命題p:若定義域為R的函數(shù)f(x)不是偶函數(shù),則?x∈R,f(-x)≠f(x).命題q:f(x)=x|x|在(-∞,0)上是減函數(shù),在(0,+∞)上是增函數(shù).則下列判斷錯誤的是( 。
A.p為假B.¬q為真C.p∨q為真D.p∧q為假

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=|log2(x-1)|-($\frac{1}{3}$)x有兩個零點x1,x2,且x1<x2,則( 。
A.x1,x2∈(0,2)B.x1,x2∈(1,2)C.x1,x2∈(2,+∞)D.x1∈(1,2),x2∈(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知i為虛數(shù)單位,若復數(shù)z滿足i3•z=1+i,則|z|=( 。
A.$\sqrt{2}$B.1C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.當$\frac{2}{3}$<m<1時,復數(shù)z=(3m-2)+(m-1)i在復平面上對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知向量$\overrightarrow{OA}$與$\overrightarrow{OB}$的夾角為60°,且|$\overrightarrow{OA}$|=3,|$\overrightarrow{OB}$|=2,若$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,且$\overrightarrow{OC}$⊥$\overrightarrow{AB}$,則實數(shù)$\frac{m}{n}$的值為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.6D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內可導,且f′(x)≠0.試證存在ξ,η∈(a,b),使得$\frac{f′(ξ)}{f′(η)}=\frac{{e}^-{e}^{a}}{b-a}•{e}^{-η}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知等差數(shù)列{an}中,Sn為其前n項和,a2+a6=6,S3=5.
(I)求數(shù)列{an}的通項公式;
(II)令${b_n}=\frac{1}{{{a_{n-1}}{a_n}}}({n≥2}),{b_1}=3,{T_n}={b_1}+{b_2}+…+{b_n}$,若Tn<m對一切n∈N*都成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知拋物線C:y2=2px(p>0)的焦點為F,以拋物線C上的點M(x0,2$\sqrt{2}$)(x0>$\frac{p}{2}$)為圓心的圓與線段MF相交于點A,且被直線x=$\frac{p}{2}$截得的弦長為$\sqrt{3}$|$\overrightarrow{MA}$|,若$\frac{|\overrightarrow{MA|}}{|\overrightarrow{AF|}}$=2,則|$\overrightarrow{AF}$|=1.

查看答案和解析>>

同步練習冊答案