分析 (1)令x=y=0.,即可求f(0);
(2)令x=1,y=-1,即可證明f(-1)=$\frac{1}{f(1)}$;
(3)結(jié)合條件即可證明f(x)>0對(duì)任意x都成立.
解答 解:(1)令x=y=0,則f(0)=f(0)•f(0),
∵f(x)≠0,
∴f(0)=1;
(2)令x=1,y=-1,則f(1-1)=f(1)f(-1)=f(0)=1,
即f(-1)=$\frac{1}{f(1)}$;
(3)f(x)=f($\frac{x}{2}$+$\frac{x}{2}$)=f($\frac{x}{2}$)f($\frac{x}{2}$)=f2($\frac{x}{2}$),
∵f(x)≠0,
∴f(x)=f2($\frac{x}{2}$)>0對(duì)任意x都成立.
點(diǎn)評(píng) 本題主要考查抽象函數(shù)的應(yīng)用,利用賦值法是解決本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{\sqrt{2}}{6}$ | B. | -$\frac{\sqrt{6}}{6}$ | C. | $\frac{\sqrt{6}}{6}$ | D. | -$\frac{\sqrt{2}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2+$\sqrt{10}$ | B. | 2+$\sqrt{7}$ | C. | 1+$\sqrt{10}$ | D. | 1+$\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com