【題目】《周髀算經(jīng)》有這樣一個(gè)問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個(gè)節(jié)氣日影長減等寸,雨水、驚蟄、春分、清明日影之和為三丈二尺,前七個(gè)節(jié)氣日影之和為七丈三尺五寸,問立夏日影長為( )
A.七尺五寸B.六尺五寸C.五尺五寸D.四尺五寸
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車又稱為小黃車,近年來逐漸走進(jìn)了人們的生活,也成為減少空氣污染,緩解城市交通壓力的一種重要手段.為調(diào)查某地區(qū)居民對(duì)共享單車的使用情況,從該地區(qū)居民中按年齡用隨機(jī)抽樣的方式隨機(jī)抽取了
人進(jìn)行問卷調(diào)查,得到這
人對(duì)共享單車的評(píng)價(jià)得分統(tǒng)計(jì)填入莖葉圖,如下所示(滿分
分):
![]()
![]()
(1)找出居民問卷得分的眾數(shù)和中位數(shù);
(2)請(qǐng)計(jì)算這
位居民問卷的平均得分;
(3)若在成績?yōu)?/span>
分的居民中隨機(jī)抽取
人,求恰有
人成績超過
分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求曲線
在
處的切線方程
,并證明:
.
(2)當(dāng)
時(shí),方程
有兩個(gè)不同的實(shí)數(shù)根
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)
有下述四個(gè)結(jié)論:
①
是偶函數(shù);②
的最大值為
;
③
在
有
個(gè)零點(diǎn);④
在區(qū)間
單調(diào)遞增.
其中所有正確結(jié)論的編號(hào)是( )
A.①②B.①③C.②④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線
的焦點(diǎn)為
,
是拋物線的準(zhǔn)線與
軸的交點(diǎn),直線
經(jīng)過焦點(diǎn)
且與拋物線相交于
、
兩點(diǎn),直線
、
分別交
軸于
、
兩點(diǎn),記
、
的面積分別為
、
.
![]()
(1)求證:
;
(2)若
恒成立,求實(shí)數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校擬從甲、乙兩名同學(xué)中選一人參加疫情知識(shí)問答競賽,于是抽取了甲、乙兩人最近同時(shí)參加校內(nèi)競賽的十次成績,將統(tǒng)計(jì)情況繪制成如圖所示的折線圖.根據(jù)該折線圖,下面結(jié)論正確的是( )
![]()
A.甲、乙成績的中位數(shù)均為7
B.乙的成績的平均分為6.8
C.甲從第四次到第六次成績的下降速率要大于乙從第四次到第五次的下降速率
D.甲的成績的方差小于乙的成績的方差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,
底面
,底面
為直角梯形,
分別為
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)若截面
與底面
所成銳二面角為
,求
的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)n個(gè)不同的實(shí)數(shù)a1,a2,…,an可得n!個(gè)不同的排列,每個(gè)排列為一行寫成一個(gè)n!行的數(shù)陣.對(duì)第i行ai1,ai2,…,ain,記bi=-ai1+2ai2-3ai3+…+(-1)nnain,i=1,2,3…,n!.例如用1,2,3可得數(shù)陣如圖,對(duì)于此數(shù)陣中每一列各數(shù)之和都是12,所以bl+b2+…b6=-12+2×12-3×12=-24.那么,在用1,2,3,4,5形成的數(shù)陣中,b1+b2+…b120等于( )
![]()
A.-3600B.-1800C.-1080D.-720
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于無窮數(shù)列
的某一項(xiàng)
,若存在
,有
成立,則稱
具有性質(zhì)
.
(1)設(shè)
,若對(duì)任意的
,
都具有性質(zhì)
,求
的最小值;
(2)設(shè)等差數(shù)列
的首項(xiàng)
,公差為
,前
項(xiàng)和為
,若對(duì)任意的
數(shù)列
中的項(xiàng)
都具有性質(zhì)
,求實(shí)數(shù)
的取值范圍;
(3)設(shè)數(shù)列
的首項(xiàng)
,當(dāng)
時(shí),存在
滿足
,且此數(shù)列中恰有一項(xiàng)
不具有性質(zhì)
,求此數(shù)列的前
項(xiàng)和的最大值和最小值以及取得最值時(shí)對(duì)應(yīng)的
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com