已知
.
(1)若
,求曲線
在點(diǎn)
處的切線方程;
(2)若
求函數(shù)
的單調(diào)區(qū)間;
(3)若不等式
恒成立,求實(shí)數(shù)
的取值范圍.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=
+ln x(a≠0,a∈R).求函數(shù)f(x)的極值和單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
,
,
,其中
。
(1)若
與
的圖像在交點(diǎn)(2,
)處的切線互相垂直,
求
的值;
(2)若
是函數(shù)
的一個(gè)極值點(diǎn),
和1是
的兩個(gè)零點(diǎn),
且
∈(![]()
,求
;
(3)當(dāng)
時(shí),若
,
是
的兩個(gè)極值點(diǎn),當(dāng)|
-
|>1時(shí),
求證:|
-
|![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(1)若函數(shù)
在
上是增函數(shù),求實(shí)數(shù)
的取值范圍;
(2)若函數(shù)
在
上的最小值為3,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(1)若當(dāng)
時(shí),函數(shù)
的最大值為
,求
的值;
(2)設(shè)
(
為函數(shù)
的導(dǎo)函數(shù)),若函數(shù)
在
上是單調(diào)函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
.
(1)已知區(qū)間
是不等式
的解集的子集,求
的取值范圍;
(2)已知函數(shù)
,在函數(shù)
圖像上任取兩點(diǎn)
、
,若存在
使得
恒成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,把邊長(zhǎng)為10的正六邊形紙板剪去相同的六個(gè)角,做成一個(gè)底面為正六邊形的無(wú)蓋六棱柱盒子,設(shè)其高為h,體積為V(不計(jì)接縫).
(1)求出體積V與高h(yuǎn)的函數(shù)關(guān)系式并指出其定義域;
(2)問(wèn)當(dāng)
為多少時(shí),體積V最大?最大值是多少?![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
定義在
上,
,導(dǎo)函數(shù)
,
.
(1)求
的單調(diào)區(qū)間和最小值;
(2)討論
與
的大小關(guān)系;
(3)是否存在
,使得
對(duì)任意
成立?若存在,求出
的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com