【題目】下列各函數(shù)在其定義域中,既是奇函數(shù),又是增函數(shù)的是( )
A.y=x+1
B.y=﹣x3
C.y=﹣ ![]()
D.y=x|x|
【答案】D
【解析】解:A.根據(jù)y=x+1的圖象知該函數(shù)不是奇函數(shù),∴該選項(xiàng)錯(cuò)誤;B.x增大時(shí),﹣x3減小,即y減小,∴y=﹣x3為減函數(shù),∴該選項(xiàng)錯(cuò)誤;
C.
在定義域上沒(méi)有單調(diào)性,∴該選項(xiàng)錯(cuò)誤;
D.y=x|x|為奇函數(shù),
;
y=x2在[0,+∞)上單調(diào)遞增,y=﹣x2在(﹣∞,0)上單調(diào)遞增,且y=x2與y=﹣x2在x=0處都為0;
∴y=x|x|在定義域R上是增函數(shù),即該選項(xiàng)正確.
故選:D.
根據(jù)奇函數(shù)圖象的特點(diǎn),減函數(shù)的定義,反比例函數(shù)在定義域上的單調(diào)性,奇函數(shù)的定義,二次函數(shù)的單調(diào)性便可判斷每個(gè)選項(xiàng)的正誤,從而找到正確選項(xiàng).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且2Sn=(n+2)an﹣1(n∈N*).
(1)求a1的值,并用an﹣1表示an;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)Tn=
+
+
+…+
,求證:Tn<
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求曲線
在
處的切線方程;
(2)討論
的單調(diào)性;
(3)設(shè)過(guò)
兩點(diǎn)的直線的斜率為
,其中
、
為曲線
上的任意兩點(diǎn),并且
,若
恒成立,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將52名志愿者分成A,B兩組參加義務(wù)植樹(shù)活動(dòng),A組種植150捆白楊樹(shù)苗,B組種植200捆沙棘樹(shù)苗.假定A,B兩組同時(shí)開(kāi)始種植.
(1)根據(jù)歷年統(tǒng)計(jì),每名志愿者種植一捆白楊樹(shù)苗用時(shí)
小時(shí),種植一捆沙棘樹(shù)苗用時(shí)
小時(shí).應(yīng)如何分配A,B兩組的人數(shù),使植樹(shù)活動(dòng)持續(xù)時(shí)間最短?
(2)在按(1)分配的人數(shù)種植1小時(shí)后發(fā)現(xiàn),每名志愿者種植一捆白楊樹(shù)苗用時(shí)仍為
小時(shí),而每名志愿者種植一捆沙棘樹(shù)苗實(shí)際用時(shí)
小時(shí),于是從A組抽調(diào)6名志愿者加入B組繼續(xù)種植,求植樹(shù)活動(dòng)所持續(xù)的時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:y=3x+3.
(1)求點(diǎn)P(5,3)關(guān)于直線l的對(duì)稱(chēng)點(diǎn)P′的坐標(biāo);
(2)求直線l1:x﹣y﹣2=0關(guān)于直線l的對(duì)稱(chēng)直線l2的方程;
(3)已知點(diǎn)M(2,6),試在直線l上求一點(diǎn)N使得|NP|+|NM|的值最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,且
,f(0)=0
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的值域;
(3)求證:方程f(x)=lnx至少有一根在區(qū)間(1,3).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在某商業(yè)區(qū)周邊有 兩條公路
和
,在點(diǎn)
處交匯,該商業(yè)區(qū)為圓心角
,半徑3
的扇形,現(xiàn)規(guī)劃在該商業(yè)區(qū)外修建一條公路
,與
,
分別交于
,要求
與扇形弧相切,切點(diǎn)
不在
,
上.
(1)設(shè)
試用
表示新建公路
的長(zhǎng)度,求出
滿足的關(guān)系式,并寫(xiě)出
的范圍;
(2)設(shè)
,試用
表示新建公路
的長(zhǎng)度,并且確定
的位置,使得新建公路
的長(zhǎng)度最短.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(0,﹣2),橢圓E:
=1(a>b>0)的離心率為
,F(xiàn)是橢圓的焦點(diǎn),直線AF的斜率為
,O為坐標(biāo)原點(diǎn). (Ⅰ)求E的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)A的直線l與E相交于P,Q兩點(diǎn),當(dāng)△OPQ的面積最大時(shí),求l的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com