【題目】對某校高三年級100名學生的視力情況進行統(tǒng)計(如果兩眼視力不同,取較低者統(tǒng)計),得到如圖所示的頻率分布直方圖,已知從這100人中隨機抽取1人,其視力在
的概率為
.
![]()
(1)求a,b的值;
(2)若報考高校A專業(yè)的資格為:任何一眼裸眼視力不低于5.0,已知在
中有
的學生裸眼視力不低于5.0.現(xiàn)用分層抽樣的方法從
和
中抽取4名同學,設(shè)這4人中有資格(僅考慮視力)考A專業(yè)的人數(shù)為隨機變量ξ,求ξ的分布列及數(shù)學期望.
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線
(a>0,b>0)的右焦點為F(3,0),左、右頂點分別為M,N,點P是E在第一象限上的任意一點,且滿足kPMkPN=8.
(1)求雙曲線E的方程;
(2)若直線PN與雙曲線E的漸近線在第四象限的交點為A,且△PAF的面積不小于3
,求直線PN的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓
將圓
的圓周分為四等份,且橢圓
的離心率為
.
(1)求橢圓
的方程;
(2)若直線
與橢圓
交于不同的兩點
,且
的中點為
,線段
的垂直平分線為
,直線
與
軸交于點
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(題文)
等邊△ABC的邊長為3,點D,E分別為AB,AC上的點,且滿足
(如圖①),將△ADE沿DE折起到△A1DE的位置,使二面角A1﹣DE﹣B成直二面角,連接A1B,A1C(如圖②).
![]()
![]()
(1)求證:A1D⊥平面BCED;
(2)在線段BC上是否存在點P(不包括端點),使直線PA1與平面A1BD所成的角為60°?若存在,求出A1P的長,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(a是常數(shù)且a>0).對于下列命題:
①函數(shù)f(x)的最小值是-1;
②函數(shù)f(x)在R上是單調(diào)函數(shù);
③若f(x)>0在
上恒成立,則a的取值范圍是a>1;
④對任意的x1<0,x2<0且x1≠x2,恒有
.
其中正確命題的序號是____________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系
中,直線
的參數(shù)方程為
(
為參數(shù),
為直線
的傾斜角),以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)寫出曲線
的直角坐標方程,并求
時直線
的普通方程;
(2)直線
和曲線
交于兩點
,點
的直角坐標為
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)
分別是橢圓
的左、右焦點,已知橢圓的長軸為
是橢圓
上一動點,
的最大值為
.
(1)求橢圓
的方程;
(2)過點
的直線
交橢圓
于
兩點,
為橢圓
上一點,
為坐標原點,且滿足
,其中
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,有一塊半圓形空地,開發(fā)商計劃建造一個矩形游泳池
及左右兩側(cè)兩個大小相同的矩形休息區(qū),其中半圓的圓心為
,半徑為
,矩形
的一邊
在
上,矩形
的一邊
在
上,點
在圓周上,
在直徑上,且
,設(shè)
.若每平方米游泳池的造價與休息區(qū)造價之比為
.
![]()
(1)記游泳池及休息區(qū)的總造價為
,求
的表達式;
(2)為進行投資預算,當
為何值時,總造價最大?并求出總造價的最大值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com