已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè)
,若在
上至少存在一點(diǎn)
,使得
成立,求
的范圍.
(Ⅰ)
在
,
上單調(diào)遞減,在
上單調(diào)遞增;(Ⅱ)
的取值范圍為
.
解析試題分析:(Ⅰ)對(duì)
求導(dǎo)來(lái)判斷單調(diào)區(qū)間;(Ⅱ)在
上至少存在一點(diǎn)
,使得
成立,即不等式
在
上有解,原不等式整理得:
(
),轉(zhuǎn)化為求
在
的最小值問(wèn)題.
試題解析:(Ⅰ)解:
.
,解得:![]()
在
,
上單調(diào)遞減,在
上單調(diào)遞增;
(Ⅱ)
,在
上至少存在一點(diǎn)
,使得
成立,即:不等式
在
有解,也即:
(
)有解,記
,則
,
,令
,
,
,
,
在
單調(diào)遞增,
,即
在
上恒成立,因此,在
上
,在
上
,即
在
單調(diào)遞減,在
單調(diào)遞增,
,所以,
的取值范圍為
.
方法二:令
,則
,
即![]()
,
①當(dāng)
時(shí),
在
上為增函數(shù),在
上為減函數(shù),由題意可知
,
,
;
②當(dāng)
時(shí),
在
上為增函數(shù),在
,
上為減函數(shù),
,由題意可知
,
;
③當(dāng)
時(shí),
在
上為增函數(shù),在
,
上為減函數(shù),
,由題意可知![]()
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(
為常數(shù)).
(1)當(dāng)
時(shí),求
的單調(diào)遞減區(qū)間;
(2)若
,且對(duì)任意的
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
⑴ 求函數(shù)
的單調(diào)區(qū)間;
⑵ 如果對(duì)于任意的
,
總成立,求實(shí)數(shù)
的取值范圍;
⑶ 是否存在正實(shí)數(shù)
,使得:當(dāng)
時(shí),不等式
恒成立?請(qǐng)給出結(jié)論并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
是實(shí)數(shù),函數(shù)
,
和
,分別是
的導(dǎo)函數(shù),若
在區(qū)間
上恒成立,則稱
和
在區(qū)間
上單調(diào)性一致.
(Ⅰ)設(shè)
,若函數(shù)
和
在區(qū)間
上單調(diào)性一致,求實(shí)數(shù)
的取值范圍;
(Ⅱ)設(shè)
且
,若函數(shù)
和
在以
為端點(diǎn)的開(kāi)區(qū)間上單調(diào)性一致,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
.
(Ⅰ)求
的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)
在
上只有一個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
(其中
,
),且函數(shù)
的圖象在點(diǎn)
處的切線與函數(shù)
的圖象在點(diǎn)
處的切線重合.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若
,滿足
,求實(shí)數(shù)
的取值范圍;
(Ⅲ)若
,試探究
與
的大小,并說(shuō)明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,![]()
(Ⅰ)若
,求函數(shù)
的極值;
(Ⅱ)設(shè)函數(shù)
,求函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)若在區(qū)間
(
)上存在一點(diǎn)
,使得![]()
![]()
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
.
(1)若
,試求函數(shù)
的單調(diào)區(qū)間;
(2)過(guò)坐標(biāo)原點(diǎn)
作曲線
的切線,證明:切點(diǎn)的橫坐標(biāo)為1;
(3)令
,若函數(shù)
在區(qū)間(0,1]上是減函數(shù),求
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com