【題目】某醫(yī)藥開(kāi)發(fā)公司實(shí)驗(yàn)室有
瓶溶液,其中
瓶中有細(xì)菌
,現(xiàn)需要把含有細(xì)菌
的溶液檢驗(yàn)出來(lái),有如下兩種方案:
方案一:逐瓶檢驗(yàn),則需檢驗(yàn)
次;
方案二:混合檢驗(yàn),將
瓶溶液分別取樣,混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果不含有細(xì)菌
,則
瓶溶液全部不含有細(xì)菌
;若檢驗(yàn)結(jié)果含有細(xì)菌
,就要對(duì)這
瓶溶液再逐瓶檢驗(yàn),此時(shí)檢驗(yàn)次數(shù)總共為
.
(1)假設(shè)
,采用方案一,求恰好檢驗(yàn)3次就能確定哪兩瓶溶液含有細(xì)菌
的概率;
(2)現(xiàn)對(duì)
瓶溶液進(jìn)行檢驗(yàn),已知每瓶溶液含有細(xì)菌
的概率均為
.
若采用方案一.需檢驗(yàn)的總次數(shù)為
,若采用方案二.需檢驗(yàn)的總次數(shù)為
.
(i)若
與
的期望相等.試求
關(guān)于
的函數(shù)解析式
;
(ii)若
,且采用方案二總次數(shù)的期望小于采用方案一總次數(shù)的期望.求
的最大值.
參考數(shù)據(jù):![]()
【答案】(1)
(2)(。
(ii)8
【解析】
(1)對(duì)可能的情況分類:<1>前兩次檢驗(yàn)出一瓶含有細(xì)菌第三次也檢驗(yàn)出一瓶含有細(xì)菌,<2>前三次都沒(méi)有檢驗(yàn)出來(lái),最后就剩下兩瓶含有細(xì)菌;(2)(i)根據(jù)
,找到
與
的函數(shù)關(guān)系;(ii)根據(jù)
得到關(guān)于
的不等式式,構(gòu)造函數(shù)解決問(wèn)題.
解:(1)記所求事件為
,“第三次含有細(xì)菌
且前2次中有一次含有細(xì)菌
”為事件
,“前三次均不含有細(xì)菌
”為事件
,
則
,且
互斥,
所以![]()
(2)
,
的取值為
,
,
所以
,
由
得
,
所以
;
(ii)
,所以
,
所以
,所以![]()
設(shè)
,
,
當(dāng)
時(shí),
在
上單調(diào)遞增;
當(dāng)
時(shí),
在
上單調(diào)遞減
又
,
所以
的最大值為8
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)
已知函數(shù)
(a為實(shí)數(shù)).
(1)當(dāng)
時(shí),求函數(shù)
的圖像在
處的切線方程;
(2)求
在區(qū)間
上的最小值;
(3)若存在兩個(gè)不等實(shí)數(shù)
,使方程
成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】城鎮(zhèn)化是國(guó)家現(xiàn)代化的重要指標(biāo),據(jù)有關(guān)資料顯示,1978—2013年,我國(guó)城鎮(zhèn)常住人口從1.7億增加到7.3億.假設(shè)每一年城鎮(zhèn)常住人口的增加量都相等,記1978年后第t(限定
)年的城鎮(zhèn)常住人口為
億.寫(xiě)出
的解析式,并由此估算出我國(guó)2017年的城鎮(zhèn)常住人口數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方體
的棱長(zhǎng)為
,
分別是
的中點(diǎn),則過(guò)
且與
平行的平面截正方體所得截面的面積為____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)店經(jīng)營(yíng)的一種商品進(jìn)行進(jìn)價(jià)是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷售量
(件)與單價(jià)
(元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開(kāi)支均為25元.
![]()
(1)根據(jù)周銷售量圖寫(xiě)出
(件)與單價(jià)
(元)之間的函數(shù)關(guān)系式;
(2)寫(xiě)出利潤(rùn)
(元)與單價(jià)
(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷售價(jià)格為多少元時(shí),周利潤(rùn)最大?并求出最大周利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐
中,
平面
,
為線段
上一點(diǎn),
,
為
的中點(diǎn).
(1)證明: ![]()
(2)求四面體
的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
(
為參數(shù)),曲線C2的參數(shù)方程為
(
為參數(shù)).在以O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線l:θ=α 與C1,C2 各有一個(gè)交點(diǎn).當(dāng) α=0時(shí),這兩個(gè)交點(diǎn)間的距離為2,當(dāng) α=
時(shí),這兩個(gè)交點(diǎn)重合.
(1) 求曲線C1,C2的直角坐標(biāo)方程
(2) 設(shè)當(dāng) α=
時(shí),l與C1,C2的交點(diǎn)分別為A1,B1,當(dāng) α=-
時(shí),l與C1,C2的交點(diǎn)分別為A2,B2,求四邊形A1A2B2B1的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在本市某舊小區(qū)改造工程中,需要在地下鋪設(shè)天燃?xì)夤艿?已知小區(qū)某處三幢房屋分別位于扇形
的三個(gè)頂點(diǎn)上,點(diǎn)
是弧
的中點(diǎn),現(xiàn)欲在線段
上找一處開(kāi)挖工作坑
(不與點(diǎn)
,
重合),為鋪設(shè)三條地下天燃?xì)夤芫
,
,
,已知
米,
,記
,該三條地下天燃?xì)夤芫的總長(zhǎng)度為
米.
![]()
(1)將
表示成
的函數(shù),并寫(xiě)出
的范圍;
(2)請(qǐng)確定工作坑
的位置,使此處地下天燃?xì)夤芫的總長(zhǎng)度最小,并求出總長(zhǎng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中國(guó)決勝全面建成小康社會(huì)的關(guān)鍵之年,如何更好地保障和改善民生,如何切實(shí)增強(qiáng)政策“獲得感”,成為
年全國(guó)兩會(huì)的重要關(guān)切.某地區(qū)為改善民生調(diào)研了甲、乙、丙、丁、戊
個(gè)民生項(xiàng)目,得到如下信息:①若該地區(qū)引進(jìn)甲項(xiàng)目,就必須引進(jìn)與之配套的乙項(xiàng)目;②丁、戊兩個(gè)項(xiàng)目與民生密切相關(guān),這兩個(gè)項(xiàng)目至少要引進(jìn)一個(gè);③乙、丙兩個(gè)項(xiàng)目之間有沖突,兩個(gè)項(xiàng)目只能引進(jìn)一個(gè);④丙、丁兩個(gè)項(xiàng)目關(guān)聯(lián)度較高,要么同時(shí)引進(jìn),要么都不引進(jìn);⑤若引進(jìn)項(xiàng)目戊,甲、丁兩個(gè)項(xiàng)目也必須引進(jìn).則該地區(qū)應(yīng)引進(jìn)的項(xiàng)目為( )
A. 甲、乙B. 丙、丁C. 乙、丁D. 甲、丙
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com