【題目】已知橢圓
:
的左、右焦點(diǎn)為
,
,上、下頂點(diǎn)為
,
,四邊形
是面積為2的正方形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)
,過(guò)點(diǎn)
的直線
與橢圓交于
,
兩點(diǎn),求證:
.
【答案】(1)
;(2)證明見(jiàn)解析
【解析】
(1)利用正方形的面積和邊長(zhǎng)關(guān)系列方程組,結(jié)合
解方程組求得
的值,進(jìn)而求得橢圓的標(biāo)準(zhǔn)方程.
(2)當(dāng)直線
斜率不存在時(shí),根據(jù)對(duì)稱(chēng)性判斷出
;當(dāng)直線
斜率存在時(shí),設(shè)出直線
的方程,聯(lián)立直線的方程和橢圓方程,化簡(jiǎn)后寫(xiě)出韋達(dá)定理,計(jì)算
,由此證得
.
(1)解:∵四邊形
是面積為2的正方形,
∴
,
又
,∴
,
則橢圓
的標(biāo)準(zhǔn)方程是
;
(2)證明:由(1)知,
,
當(dāng)直線
的斜率不存在時(shí),
軸,
則點(diǎn)
,
關(guān)于
軸對(duì)稱(chēng),
此時(shí)有,
;
當(dāng)直線
的斜率存在時(shí),
設(shè)直線
的方程為
,
聯(lián)立
消去
得,
,
設(shè)
,
,
則
,
,
∵
,∴![]()
![]()
![]()
,
即
,∴
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】千百年來(lái),我國(guó)勞動(dòng)人民在生產(chǎn)實(shí)踐中根據(jù)云的形狀、走向、速度、厚度、顏色等的變化,總結(jié)了豐富的“看云識(shí)天氣”的經(jīng)驗(yàn),并將這些經(jīng)驗(yàn)編成諺語(yǔ),如“天上鉤鉤云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同學(xué)為了驗(yàn)證“日落云里走,雨在半夜后”,觀察了所在地區(qū)
的
天日落和夜晚天氣,得到如下
列聯(lián)表:
夜晚天氣日落云里走 | 下雨 | 未下雨 |
出現(xiàn) |
|
|
未出現(xiàn) |
|
|
參考公式:
.
臨界值表:
|
|
|
|
|
|
|
|
|
|
(1)根據(jù)上面的列聯(lián)表判斷能否有
的把握認(rèn)為“當(dāng)晚下雨”與“‘日落云里走’出現(xiàn)”有關(guān)?
(2)小波同學(xué)為進(jìn)一步認(rèn)識(shí)其規(guī)律,對(duì)相關(guān)數(shù)據(jù)進(jìn)行分析,現(xiàn)從上述調(diào)查的“夜晚未下雨”天氣中按分層抽樣法抽取
天,再?gòu)倪@
天中隨機(jī)抽出
天進(jìn)行數(shù)據(jù)分析,求抽到的這
天中僅有
天出現(xiàn)“日落云里走”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】陽(yáng)馬和鱉臑(bienao)是《九章算術(shù)·商功》里對(duì)兩種錐體的稱(chēng)謂.如圖所示,取一個(gè)長(zhǎng)方體,按下圖斜割一分為二,得兩個(gè)模一樣的三棱柱,稱(chēng)為塹堵(如圖).再沿其中一個(gè)塹堵的一個(gè)頂點(diǎn)與相對(duì)的棱剖開(kāi),得四棱錐和三棱錐各一個(gè),有一棱與底面垂直的四棱錐稱(chēng)為陽(yáng)馬(四棱錐
)余下三棱錐稱(chēng)為鱉臑(三棱錐
)若將某長(zhǎng)方體沿上述切割方法得到一個(gè)陽(yáng)馬一個(gè)鱉臑,且該陽(yáng)馬的正視圖和鱉臑的側(cè)視圖如圖所示,則可求出該陽(yáng)馬和鱉臑的表面積之和為( )
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】第7屆世界軍人運(yùn)動(dòng)會(huì)于2019年10月18日至27日在湖北武漢舉行,賽期10天,共設(shè)置射擊、游泳、田徑、籃球等27個(gè)大項(xiàng),329個(gè)小項(xiàng),共有來(lái)自100多個(gè)國(guó)家的近萬(wàn)名現(xiàn)役軍人同臺(tái)競(jìng)技.前期為迎接軍運(yùn)會(huì)順利召開(kāi),特招聘了3萬(wàn)名志愿者.某部門(mén)為了了解志愿者的基本情況,調(diào)查了其中100名志愿者的年齡,得到了他們年齡的中位數(shù)為34歲,年齡在
歲內(nèi)的人數(shù)為15人,并根據(jù)調(diào)查結(jié)果畫(huà)出如所示的頻率分布直方圖:
![]()
(1)求
,
的值并估算出志愿者的平均年齡(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)本次軍運(yùn)會(huì)志愿者主要通過(guò)直接到武漢軍運(yùn)會(huì)執(zhí)委會(huì)志愿者部現(xiàn)場(chǎng)報(bào)名和登錄第七屆世界軍運(yùn)會(huì)官網(wǎng)報(bào)名,即現(xiàn)場(chǎng)和網(wǎng)絡(luò)兩種方式報(bào)名調(diào)查.這100位志愿者的報(bào)名方式部分?jǐn)?shù)據(jù)如下表所示,完善下面的表格,通過(guò)計(jì)算說(shuō)明能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下,認(rèn)為“選擇哪種報(bào)名方式與性別有關(guān)系”?
男性 | 女性 | 總計(jì) | |
現(xiàn)場(chǎng)報(bào)名 | 50 | ||
網(wǎng)絡(luò)報(bào)名 | 31 | ||
總計(jì) | 50 |
參考公式及數(shù)據(jù):
,其中
.
| 0.05 | 0.01 | 0.005 | 0.001 |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有限個(gè)元素組成的集合
,
,記集合
中的元素個(gè)數(shù)為
,即
.定義
,集合
中的元素個(gè)數(shù)記為
,當(dāng)
時(shí),稱(chēng)集合
具有性質(zhì)
.
(1)
,
,判斷集合
,
是否具有性質(zhì)
,并說(shuō)明理由;
(2)設(shè)集合
,
且
(
),若集合
具有性質(zhì)
,求
的最大值;
(3)設(shè)集合
,其中數(shù)列
為等比數(shù)列,
(
)且公比為有理數(shù),判斷集合
是否具有性質(zhì)
并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在直角梯形
中,AB∥CD,
,且
.現(xiàn)以
為一邊向梯形外作正方形
,然后沿邊
將正方形
翻折,使平面
與平面
垂直,如圖2.
![]()
![]()
(Ⅰ)求證:BC⊥平面DBE;
(Ⅱ)求點(diǎn)D到平面BEC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校打算在長(zhǎng)為1千米的主干道
一側(cè)的一片區(qū)域內(nèi)臨時(shí)搭建一個(gè)強(qiáng)基計(jì)劃高校咨詢(xún)和宣傳臺(tái),該區(qū)域由直角三角形區(qū)域
(
為直角)和以
為直徑的半圓形區(qū)域組成,點(diǎn)
(異于
,
)為半圓弧上一點(diǎn),點(diǎn)
在線段
上,且滿(mǎn)足
.已知
,設(shè)
,且
.初步設(shè)想把咨詢(xún)臺(tái)安排在線段
,
上,把宣傳海報(bào)懸掛在弧
和線段
上.
![]()
(1)若為了讓學(xué)生獲得更多的咨詢(xún)機(jī)會(huì),讓更多的省內(nèi)高校參展,打算讓
最大,求該最大值;
(2)若為了讓學(xué)生了解更多的省外高校,貼出更多高校的海報(bào),打算讓弧
和線段
的長(zhǎng)度之和最大,求此時(shí)的
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】折紙是一項(xiàng)藝術(shù),可以折出很多數(shù)學(xué)圖形.將一張圓形紙片放在平面直角坐標(biāo)系中,圓心B(-1,0),半徑為4,圓內(nèi)一點(diǎn)A為拋物線
的焦點(diǎn).若每次將紙片折起一角,使折起部分的圓弧的一點(diǎn)
始終與點(diǎn)A重合,將紙展平,得到一條折痕,設(shè)折痕與線段
B的交點(diǎn)為P.
(Ⅰ)將紙片展平后,求點(diǎn)P的軌跡C的方程;
(Ⅱ)已知過(guò)點(diǎn)A的直線l與軌跡C交于R,S兩點(diǎn),當(dāng)l無(wú)論如何變動(dòng),在AB所在直線上存在一點(diǎn)T,使得
所在直線一定經(jīng)過(guò)原點(diǎn),求點(diǎn)T的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
、
是橢圓和雙曲線的公共焦點(diǎn),
是他們的一個(gè)公共點(diǎn),且
,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為___.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com