【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目,若一名學(xué)生從六個科目中選出了三個科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.
某學(xué)校為了了解高一年級420名學(xué)生選考科目的意向,隨機選取30名學(xué)生進行了一次調(diào)查,統(tǒng)計選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學(xué) | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 |
選考方案待確定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 1 | 0 | 0 | 1 |
(Ⅰ)估計該學(xué)校高一年級選考方案確定的學(xué)生中選考生物的學(xué)生有多少人?
(Ⅱ)假設(shè)男生、女生選擇選考科目是相互獨立的.從選考方案確定的8位男生隨機選出1人,從選考方案確定的10位女生中隨機選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;
(Ⅲ)從選考方案確定的8名男生隨機選出2名,設(shè)隨機變量兩名男生選考方案相同時
,兩名男生選考方案不同時
,求
的分布列及數(shù)學(xué)期望
.
【答案】(Ⅰ)
;(Ⅱ)
;(Ⅲ)
.
【解析】試題分析:(Ⅰ)設(shè)該學(xué)校選考方案確定的學(xué)生中選考生物的學(xué)生為
則
(人);(Ⅱ)根據(jù)古典概型概率公式可得該男生和該女生的選考方案中都含有歷史科目的概率為
;(Ⅲ)由題意知
的所有可能取值為
,根據(jù)古典概型概率公式計算出兩隨機變量對應(yīng)的概率,可得到分布列,從而根據(jù)期望公式可得
的值.
試題解析:(Ⅰ)設(shè)該學(xué)校選考方案確定的學(xué)生中選考生物的學(xué)生為![]()
(人),
所以該學(xué)校選考方案確定的學(xué)生中選考生物的學(xué)生為
人.
(Ⅱ)該男生和該女生的選考方案中都含有歷史科目的概率為
.
(Ⅲ)由題意知
的所有可能取值為![]()
![]()
![]()
所以
的分布列為
![]()
期望為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,且不等式
對任意的
恒成立.
(Ⅰ) 求
與
的關(guān)系;
(Ⅱ) 若數(shù)列
滿足:
,
,
為數(shù)列
的前
項和.求證:
;
(Ⅲ) 若在數(shù)列
中,
,
為數(shù)列
的前
項和.求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點
在橢圓
:
上,
是橢圓的一個焦點.
(Ⅰ)求橢圓
的方程;
(Ⅱ)橢圓C上不與
點重合的兩點
,
關(guān)于原點O對稱,直線
,
分別交
軸于
,
兩點.求證:以
為直徑的圓被直線
截得的弦長是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x-3)2+(y-4)2=4.
(Ⅰ)過原點O(0,0)作圓C的切線,切點分別為H、K,求直線HK的方程;
(Ⅱ)設(shè)定點M(-3,8),動點N在圓C上運動,以CM,CN為領(lǐng)邊作平行四邊形MCNP,求點P的軌跡方程;
(Ⅲ)平面上有兩點A(1,0),B(-1,0),點P是圓C上的動點,求|AP|2+|BP|2的最小值;
(Ⅳ)若Q是x軸上的動點,QR,QS分別切圓C于R,S兩點.試問:直線RS是否恒過定點?若是,求出定點坐標,若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體
的棱長為2,P為BC的中點,Q為線段
上的動點,過點A,P,Q的平面截該正方體所得的截面記為S,則下列命題正確的是______(寫出所有正確命題的編號).
![]()
①當
時,S為四邊形;②當
時,S為等腰梯形;③當
時,S與
的交點R滿足
;④當
時,S為五邊形;⑤當
時,S的面積為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合
是集合
的一個含有
個元素的子集.
(Ⅰ)當
時,
設(shè)![]()
(i)寫出方程
的解
;
(ii)若方程
至少有三組不同的解,寫出
的所有可能取值.
(Ⅱ)證明:對任意一個
,存在正整數(shù)
使得方程
至少有三組不同的解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:
的焦點在
軸上,A是E的左頂點,斜率為k (k > 0)的直線交E于A,M兩點,點N在E上,MA⊥NA.
(Ⅰ)當t=4,
時,求△AMN的面積;
(Ⅱ)當
時,求k的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com