分析 將原不等式化為(x-1)(ax-1)≥0,再對參數(shù)a的取值范圍進行討論,從而求出不等式的解集.
解答 解:原不等式可化為(x-1)(ax-1)≥0,
當a>0時,不等式可化為(x-1)(x-$\frac{1}{a}$)≥0,
該不等式對應(yīng)方程的兩個實數(shù)根為1和$\frac{1}{a}$;
若a>1,則1>$\frac{1}{a}$,不等式的解集為{x|x≤$\frac{1}{a}$或x≥1};
若a=1,則1=$\frac{1}{a}$,不等式化為(x-1)2≥0,解集為R;
若0<a<1,則1<$\frac{1}{a}$,不等式的解集為{x|x≤1或x≥$\frac{1}{a}$};
當a=0時,不等式化為-x+1≥0,解集為{x|x≤1};
當a<0時,不等式化為(x-1)(x-$\frac{1}{a}$)≤0,且$\frac{1}{a}$<1,
解集為{x|$\frac{1}{a}$≤x≤1}.
點評 本題考查了含有字母系數(shù)的一元二次不等式的解法與應(yīng)用問題,解題時應(yīng)用分類討論的數(shù)學(xué)思想,是綜合題目.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0<a≤1 | B. | a>0或-1<a<0 | C. | -1≤a<0 | D. | -1≤a≤1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com