【題目】在平行四邊形
中,過點(diǎn)
的直線與線段
分別相交于點(diǎn)
,若
.
(1)求
關(guān)于
的函數(shù)解析式;
(2)定義函數(shù)
,點(diǎn)列
在函數(shù)
的圖像上,且數(shù)列
是以1為首項(xiàng),
為公比的等比數(shù)列,
為原點(diǎn),令
,是否存在點(diǎn)
,使得
?若存在,求出
點(diǎn)的坐標(biāo),若不存在,說明理由.
(3)設(shè)函數(shù)
為
上的偶函數(shù),當(dāng)
時(shí),
函數(shù)
的圖像關(guān)于直線
對(duì)稱,當(dāng)方程
在
上有兩個(gè)不同的實(shí)數(shù)解時(shí),求實(shí)數(shù)
的取值范圍.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】F1,F2是橢圓C1和雙曲線C2的公共焦點(diǎn),e1,e2分別為曲線C1,C2的離心率,P為曲線C1,C2的一個(gè)公共點(diǎn),若
,且
,則e1∈_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】與正方體ABCD—A1B1C1D1的三條棱AB、CC1、A1D1所在直線的距離相等的點(diǎn)( )
A.有且只有1個(gè)B.有且只有2個(gè)
C.有且只有3個(gè)D.有無數(shù)個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,圓C:x2+y2+4x-2y+m=0與直線
相切.
(1)求圓C的方程;
(2)若圓C上有兩點(diǎn)M,N關(guān)于直線x+2y=0對(duì)稱,且
,求直線MN的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三個(gè)村莊A,B,C構(gòu)成一個(gè)三角形,且AB=5千米,BC=12千米,AC=13千米.為了方便市民生活,現(xiàn)在△ABC內(nèi)任取一點(diǎn)M建一大型生活超市,則M到A,B,C的距離都不小于2千米的概率為
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,
.
(1)若曲線
在點(diǎn)
處的切線與
軸平行,求
;
(2)當(dāng)
時(shí),函數(shù)
的圖象恒在
軸上方,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)等比數(shù)列
,等差數(shù)列
滿足
,且
是
與
的等比中項(xiàng).
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,設(shè)
,且
,記
;
(1)設(shè)
,其中
,試求
的單調(diào)區(qū)間;
(2)試判斷弦
的斜率
與
的大小關(guān)系,并證明;
(3)證明:當(dāng)
時(shí),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,
,E為AB的中點(diǎn).將
沿DE翻折,得到四棱錐
.設(shè)
的中點(diǎn)為M,在翻折過程中,有下列三個(gè)命題:
![]()
①總有
平面
;
②線段BM的長(zhǎng)為定值;
③存在某個(gè)位置,使DE與
所成的角為90°.
其中正確的命題是_______.(寫出所有正確命題的序號(hào))
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com