【題目】橢圓中心為坐標(biāo)原點(diǎn)O,對(duì)稱(chēng)軸為坐標(biāo)軸,且過(guò)M(2,
) ,N(
,1)兩點(diǎn),
(I)求橢圓的方程;
(II)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線(xiàn)與橢圓C恒有兩個(gè)交點(diǎn)A,B,且
?若存在,寫(xiě)出該圓的方程,并求|AB |的取值范圍,若不存在說(shuō)明理由。
【答案】(1)
(2)
,
【解析】試題分析:(Ⅰ)由橢圓的離心率及過(guò)點(diǎn)過(guò)M(2,
) ,N(
,1)列出方程組求出
,由此能求出橢圓
的方程.
(2)假設(shè)存在這樣的圓,設(shè)該圓的切線(xiàn)為
與橢圓聯(lián)立,得
由此利用根的判別式、韋達(dá)定理、圓的性質(zhì),結(jié)合已知條件能求出
的取值范圍.
試題解析:(1)
![]()
(2)假設(shè)存在這樣的圓,設(shè)該圓的切線(xiàn)為y=kx+m,與
聯(lián)立消y得(1+2k2)x2+4kmx+2m2﹣8=0
當(dāng)△=16k2m2﹣4(1+2k2)(2m2﹣8)=8(8k2﹣m2+4)>0
因?yàn)?/span>
,所以
所以3m2﹣8k2﹣8=0,由△=16k2m2﹣4(1+2k2)(2m2﹣8)=8(8k2﹣m2+4)>0 得
△=16k2m2﹣4(1+2k2)(2m2﹣8)=8(8k2﹣m2+4)>0
代入化簡(jiǎn)得
又y=kx+m與圓心在原點(diǎn)的圓相切,所以
所求圓
,直線(xiàn)AB斜率不存在時(shí)也滿(mǎn)足.
當(dāng)
時(shí),
,當(dāng)
時(shí),
,即![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),f(x)的圖象如圖所示,則不等式f′(x)f(x)<0的解集為( ) ![]()
A.(1,2)∪(
,3)∪(﹣∞,﹣1)
B.(﹣∞,﹣1)∪(
,3)
C.(﹣∞,﹣1)∪(3,+∞)
D.(1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)
的焦點(diǎn)是橢圓
:
的頂點(diǎn),
為橢圓
的左焦點(diǎn)且橢圓
經(jīng)過(guò)點(diǎn)
.
(1)求橢圓
的方程;
(2)過(guò)橢圓
的右頂點(diǎn)作斜率為
(
)的直線(xiàn)交橢圓
于另一點(diǎn)
,連結(jié)
并延長(zhǎng)
交橢圓
于點(diǎn)
,當(dāng)
的面積取得最大值時(shí),求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2ax2+bx+1(e為自然對(duì)數(shù)的底數(shù)).
(1)若
,求函數(shù)F(x)=f(x)ex的單調(diào)區(qū)間;
(2)若b=e﹣1﹣2a,方程f(x)=ex在(0,1)內(nèi)有解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的非負(fù)半軸重合,若曲線(xiàn)C的極坐標(biāo)方程為ρ=6cosθ+2sinθ,直線(xiàn)l的參數(shù)方程為
(t為參數(shù)).
(1)求曲線(xiàn)C的直角坐標(biāo)方程與直線(xiàn)l的普通方程;
(2)設(shè)點(diǎn)Q(1,2),直線(xiàn)l與曲線(xiàn)C交于A(yíng),B兩點(diǎn),求|QA||QB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|a﹣3x|﹣|2+x|.
(1)若a=2,解不等式f(x)≤3;
(2)若存在實(shí)數(shù)a,使得不等式f(x)≥1﹣a+2|2+x|成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的不等式a﹣ax>ex(2x﹣1)(a>﹣1)有且僅有兩個(gè)整數(shù)解,則實(shí)數(shù)a的取值范圍為( )
A.(﹣
,
]
B.(﹣1,
]
C.(﹣
,﹣
]
D.(﹣
,﹣
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)
是定義在
上的奇函數(shù),且
.
(1)確定
的解析式;
(2)判斷并證明
在
上的單調(diào)性;
(3)解不等式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l過(guò)點(diǎn)A(0,4),且在兩坐標(biāo)軸上的截距之和為1.
(Ⅰ)求直線(xiàn)l的方程;
(Ⅱ)若直線(xiàn)l1與直線(xiàn)l平行,且l1與l間的距離為2,求直線(xiàn)l1的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com