【題目】已知圓x2+y2=8內有一點P0(-1,2),AB為過點P0且傾斜角為α的弦.
(1)當α=
時,求AB的長;
(2)當弦AB被點P0平分時,寫出直線AB的方程(用直線方程的一般式表示).
科目:高中數(shù)學 來源: 題型:
【題目】先閱讀下列不等式的證法,再解決后面的問題:
已知
,
,求證:
.
證明:構造函數(shù)
,
即![]()
.
因為對一切
,恒有
,
所以
,從而得
.
(1)若
,
,請寫出上述結論的推廣式;
(2)參考上述證法,對你推廣的結論加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構認為該事件在一段時間沒有發(fā)生在規(guī)模群體感染的標志為“連續(xù)10天,每天新增疑似病例不超過7人”.根據過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據,一定符合該標志的是
A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0
C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中正確的是( )
A. 若
為真命題,則
為真命題 B. 若
則
恒成立
C. 命題“
”的否定是“
” D. 命題“若
則
”的逆否命題是“若
,則
”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,(其中
)的圖象與x軸的交點中,相鄰兩個交點之間的距離為
,且圖象上一個最低點為
.
(Ⅰ)求
的解析式;
(Ⅱ)當
,求
的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校學生社團組織活動豐富,學生會為了解同學對社團活動的滿意程度,隨機選取了100位同學進行問卷調查,并將問卷中的這100人根據其滿意度評分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6組,制成如圖所示頻率分布直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據的中位數(shù);
(3)現(xiàn)從被調查的問卷滿意度評分值在[60,80)的學生中按分層抽樣的方法抽取5人進行座談了解,再從這5人中隨機抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】焦點在x軸上的橢圓C:
經過點
,橢圓C的離心率為
.
,
是橢圓的左、右焦點,P為橢圓上任意點.
(1)求橢圓的標準方程;
(2)若點M為
的中點(O為坐標原點),過M且平行于OP的直線l交橢圓C于A,B兩點,是否存在實數(shù)
,使得
;若存在,請求出
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l1:y=
x,l2:y=-
x,動點P,Q分別在l1,l2上移動,|PQ|=2
,N是線段PQ的中點,記點N的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點M(0,1)分別作直線MA,MB交曲線C于A,B兩點,設這兩條直線的斜率分別為k1,k2,且k1+k2=2,證明:直線AB過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)
定義域為
,對于區(qū)間
,如果存在
,
,使得
,則稱區(qū)間
為函數(shù)
的區(qū)間.
(Ⅰ)判斷
是否是函數(shù)
的區(qū)間;
(Ⅱ)若
是函數(shù)
(其中
)的區(qū)間,求
的取值范圍;
(Ⅲ)設
為正實數(shù),若
是函數(shù)
的區(qū)間,求
的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com