【題目】選修4-5:不等式選講
設(shè)函數(shù)f(x)=|x﹣1|﹣|2x+1|的最大值為m.
(1)作出函數(shù)f(x)的圖象;
(2)若a2+2c2+3b2=m,求ab+2bc的最大值.
【答案】
(1)解:當(dāng)x≤﹣
時,f(x)=(1﹣x)+2x+1=x+2;
當(dāng)﹣
<x<1時,f(x)=(1﹣x)﹣2x﹣1=﹣3x:
當(dāng)x≥1時,f(x)=(x﹣1)﹣2x﹣1=﹣x﹣2,
函數(shù)f(x)的圖象,如圖所示
;
(2)解:由題意,當(dāng)x=﹣
時,f(x)取得最大值m=1.5,∴a2+2c2+3b2=1.5,
∴ab+2bc≤
(a2+2c2+3b2)=
,即ab+2bc的最大值為
.
【解析】(1)分類討論,作出函數(shù)f(x)的圖象;(2)求出函數(shù)的值域,即可求m的值,利用基本不等式求ab+2bc的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=
x3+ax(a∈R),且曲線f(x)在x=
處的切線與直線y=﹣
x﹣1平行.
(Ⅰ)求a的值及函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)y=f(x)﹣m在區(qū)間[﹣3,
]上有三個零點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過雙曲線
的右支上的一點P作一直線l與兩漸近線交于A、B兩點,其中P是AB的中點;
(1)求雙曲線的漸近線方程;
(2)當(dāng)P坐標(biāo)為(x0 , 2)時,求直線l的方程;
(3)求證:|OA||OB|是一個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , 若Sm﹣1=﹣4,Sm=0,Sm+2=14(m≥2,且m∈N*).
(1)求m的值;
(2)若數(shù)列{bn}滿足
=logabn(n∈N*),求數(shù)列{(an+6)bn}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知常數(shù)λ≥0,設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,滿足:a1 = 1,
(
).
(1)若λ = 0,求數(shù)列{an}的通項公式;
(2)若
對一切
恒成立,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的三個內(nèi)角A、B、C所對的邊分別為a、b、c,已知a≠b,c=
,且bsinB﹣asinA=
acosA﹣
bcosB.
(Ⅰ)求C;
(Ⅱ)若△ABC的面積為
,求a與b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0),直線
交橢圓E于A,B兩點,△ABF1的周長為16,△AF1F2的周長為12.
(1)求橢圓E的標(biāo)準(zhǔn)方程與離心率;
(2)若直線l與橢圓E交于C,D兩點,且P(2,2)是線段CD的中點,求直線l的一般方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線l:ax+
y﹣1=0與x,y軸的交點分別為A,B,直線l與圓O:x2+y2=1的交點為C,D.給出下列命題:p:a>0,S△AOB=
,q:a>0,|AB|<|CD|.則下面命題正確的是( )
A.p∧q
B.¬p∧¬q
C.p∧¬q
D.¬p∧q
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com