【題目】直線
與橢圓
交于
,
兩點(diǎn),已知
,
,若橢圓的離心率
,又經(jīng)過(guò)點(diǎn)
,
為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)
時(shí),試問(wèn):
的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.
【答案】(1)
;(2)定值1.
【解析】
(1)將點(diǎn)
代入橢圓方程,結(jié)合雙曲線的離心率
列方程,求得
的值,即求得橢圓方程.(2)當(dāng)直線
斜率不存在時(shí),求得三角形的面積為定值
.當(dāng)直線
斜率存在時(shí),設(shè)出直線
的方程,聯(lián)立直線方程與橢圓方程,寫出韋達(dá)定理,代入
,化簡(jiǎn).然后通過(guò)計(jì)算三角形的面積,由此判斷三角形的面積為定值
.
(1)∵
∴
∴橢圓的方程為
(2)①當(dāng)直線
斜率不存在時(shí),即
,
由已知
,得![]()
又
在橢圓上, 所以 ![]()
,三角形的面積為定值.
②當(dāng)直線
斜率存在時(shí):設(shè)
的方程為![]()
必須
即
得到
,
∵
,∴![]()
代入整理得:
所以三角形的面積為定值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)經(jīng)過(guò)短短幾年的發(fā)展,員工近百人.不知何因,人員雖然多了,但員工的實(shí)際工作效率還不如從前.
年
月初,企業(yè)領(lǐng)導(dǎo)按員工年齡從企業(yè)抽選
位員工交流,并將被抽取的員工按年齡(單位:歲)分為四組:第一組
,第二組
,第三組
,第四組
,且得到如下頻率分布直方圖:
![]()
(1)求實(shí)數(shù)
的值;
(2)若用簡(jiǎn)單隨機(jī)抽樣方法從第二組、第三組中再隨機(jī)抽取
人作進(jìn)一步交流,求“被抽取得
人均來(lái)自第二組”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為保障城市蔬菜供應(yīng),某蔬菜種植基地每年投入20萬(wàn)元搭建甲、乙兩個(gè)無(wú)公害蔬菜大棚,每個(gè)大棚至少要投入2萬(wàn)元,其中甲大棚種西紅柿,乙大棚種黃瓜.根據(jù)以往的經(jīng)驗(yàn),發(fā)現(xiàn)種西紅柿的年收入
、種黃瓜的年收入
與大棚投入
分別滿足
,
.設(shè)甲大棚的投入為
,每年兩個(gè)大棚的總收入為
.(投入與收入的單位均為萬(wàn)元)
(Ⅰ)求
的值.
(Ⅱ)試問(wèn):如何安排甲、乙兩個(gè)大棚的投入,才能使年總收人
最大?并求最大年總收入.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線
與橢圓
交于
,
兩點(diǎn),已知
,
,若橢圓的離心率
,又經(jīng)過(guò)點(diǎn)
,
為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)
時(shí),試問(wèn):
的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,
,動(dòng)點(diǎn)
滿足:以
為直徑的圓與
軸相切.
(1)求點(diǎn)
的軌跡方程;
(2)設(shè)點(diǎn)
的軌跡為曲線
,直線
過(guò)點(diǎn)
且與
交于
兩點(diǎn),當(dāng)
與
的面積之和取得最小值時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正整數(shù)數(shù)列中,由1開(kāi)始依次按如下規(guī)則,將某些數(shù)取出.先取1;再取1后面兩個(gè)偶數(shù)2,4;再取4后面最鄰近的3個(gè)連續(xù)奇數(shù)5,7,9;再取9后面的最鄰近的4個(gè)連續(xù)偶數(shù)10,12,14,16;再取此后最鄰近的5個(gè)連續(xù)奇數(shù)17,19,21,23,25.按此規(guī)則一直取下去,得到一個(gè)新數(shù)列1,2,4,5,7,9,10,12,14,16,17,…,則在這個(gè)新數(shù)列中,由1開(kāi)始的第2 019個(gè)數(shù)是( )
A. 3 971B. 3 972C. 3 973D. 3 974
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
=
.
(1)求函數(shù)
的單調(diào)遞增區(qū)間;
(2)已知在△ABC中,A,B,C的對(duì)邊分別為a,b,c,若
,
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4
4:坐標(biāo)系與參數(shù)方程:在直角坐標(biāo)系xoy中,曲線
的參數(shù)方程為
,(
為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(其中
)
(1)求
的單調(diào)減區(qū)間;
(2)當(dāng)
時(shí),
恒成立,求
的取值范圍;
(3)設(shè)
只有兩個(gè)零點(diǎn)
(
),求
的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com