設(shè)函數(shù)![]()
(1)求
的單調(diào)增區(qū)間;
(2)
時(shí),函數(shù)
有三個(gè)互不相同的零點(diǎn),求實(shí)數(shù)
的取值范圍.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
(
).
(1)若x=3是
的極值點(diǎn),求
在
[1,a]上的最小值和最大值;
(2)若
在
時(shí)是增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(x)=
x2+2x+kln x,其中k≠0.
(1)當(dāng)k>0時(shí),判斷f(x)在(0,+∞)上的單調(diào)性;
(2)討論f(x)的極值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
是二次函數(shù),方程
有兩個(gè)相等的實(shí)數(shù)根,且
。
(1)求
的表達(dá)式;
(2)若直線
把
的圖象與兩坐標(biāo)軸圍成的圖形面積二等分,求t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
,其導(dǎo)函數(shù)為
.
(1)若
,求函數(shù)
在點(diǎn)
處的切線方程;
(2)求
的單調(diào)區(qū)間;
(3)若
為整數(shù),若
時(shí),
恒成立,試求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
,其中
.
(1)當(dāng)
時(shí),求
的單調(diào)遞增區(qū)間;
(2)若
在區(qū)間
上的最小值為8,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知常數(shù)
,函數(shù)
.
(1)討論
在區(qū)間
上的單調(diào)性;
(2)若
存在兩個(gè)極值點(diǎn)
,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=x3+x-16.
(1)求曲線y=f(x)在點(diǎn)(2,-6)處的切線的方程;
(2)直線l為曲線y=f(x)的切線,且經(jīng)過(guò)原點(diǎn),求直線l的方程及切點(diǎn)坐標(biāo);
(3)如果曲線y=f(x)的某一切線與直線y=-
x+3垂直,求切點(diǎn)坐標(biāo)與切線的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com