已知函數(shù)
,其中
.
(1)若
,求曲線
在點(diǎn)
處的切線方程;
(2)求函數(shù)的極大值和極小值,若函數(shù)
有三個零點(diǎn),求
的取值范圍.
(1)
;(2)
.
解析試題分析:(1)本小題首先代入
求得原函數(shù)的導(dǎo)數(shù),然后求出切點(diǎn)坐標(biāo)和切線的斜率,最后利用點(diǎn)斜式求得切線方程
;
(2)本小題首先求得原函數(shù)的導(dǎo)數(shù),通過導(dǎo)數(shù)零點(diǎn)的分析得出原函數(shù)單調(diào)性,做成表格,求得函數(shù)的極大值
和極小值
,若要
有三個零點(diǎn),只需![]()
即可,解不等式即可.
試題解析:(Ⅰ)當(dāng)
時,
;![]()
所以曲線
在點(diǎn)
處的切線方程為
,
即
6分
(Ⅱ)
=
.令
,解得
8分
因
,則
.當(dāng)
變化時,
、
的變化情況如下表:
則極大值為:x ![]()
0 ![]()
![]()
![]()
f’(x) + 0 - 0 + f(x) 遞增 極大值 遞減 極小值 遞增 ![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)若函數(shù)
在
上是增函數(shù),求實數(shù)
的取值范圍;
(2)若函數(shù)
在
上的最小值為3,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)
,過曲線
上的點(diǎn)
的切線方程為
.
(1)若
在
時有極值,求
的表達(dá)式;
(2)在(1)的條件下,求
在[-3,1]上的最大值;
(3)若函數(shù)
在區(qū)間[-2,1]上單調(diào)遞增,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(其中
為常數(shù)).
(Ⅰ)當(dāng)
時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)
時,設(shè)函數(shù)
的3個極值點(diǎn)為
,且
.證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在
上的函數(shù)
,其中
為常數(shù).
(1)當(dāng)
是函數(shù)
的一個極值點(diǎn),求
的值;
(2)若函數(shù)
在區(qū)間
上是增函數(shù),求實數(shù)
的取值范圍;
(3)當(dāng)
時,若
,在
處取得最大值,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,
.
(1)討論函數(shù)
的單調(diào)性;
(2)若存在
,使得
成立,求滿足上述條件的最大整數(shù)
;
(3)如果對任意的
,都有
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
的導(dǎo)數(shù)為
,若函數(shù)
的圖象關(guān)于直線
對稱,且函數(shù)
在
處取得極值.
(I)求實數(shù)
的值;
(II)求函數(shù)
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
,其中
.
(Ⅰ)討論
的單調(diào)性;
(Ⅱ)若
在其定義域內(nèi)為增函數(shù),求正實數(shù)
的取值范圍;
(Ⅲ)設(shè)函數(shù)
,當(dāng)
時,若
,
,總有
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com