【題目】在平面直角坐標(biāo)系xOy中,已知圓C:(x﹣2)2+(y+1)2=5,過點P(5,0)且斜率為k的直線
與圓C相交于不同的兩點A,B.
(I)求k的取值范圍;
(Ⅱ)若弦長|AB|=4,求直線
的方程.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若某產(chǎn)品的直徑長與標(biāo)準(zhǔn)值的差的絕對值不超過1mm時,則視為合格品,否則視為不合格品.在近期一次產(chǎn)品抽樣檢查中,從某廠生產(chǎn)的此種產(chǎn)品中,隨機抽取5000件進(jìn)行檢測,結(jié)果發(fā)現(xiàn)有50件不合格品.計算這50件不合格品的直徑長與標(biāo)準(zhǔn)值的差(單位:mm),將所得數(shù)據(jù)分組,得到如下頻率分布表:
![]()
(1)將上面表格中缺少的數(shù)據(jù)填在相應(yīng)位置上;
(2)估計該廠生產(chǎn)的此種產(chǎn)品中,不合格品的直徑長與標(biāo)準(zhǔn)值的差落在區(qū)間(1,3]內(nèi)的概率;
(3)現(xiàn)對該廠這種產(chǎn)品的某個批次進(jìn)行檢查,結(jié)果發(fā)現(xiàn)有20件不合格品.據(jù)此估算這批產(chǎn)品中的合格品的件數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在三角形
中,
為其中位線,且
,若沿
將三角形
折起,使
,構(gòu)成四棱錐
,且
.
![]()
(1)求證:平面
平面
;
(2)當(dāng) 異面直線
與
所成的角為
時,求折起的角度
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點分別為
,橢圓
過點
,直線
交
軸于
,且
,
為坐標(biāo)原點.
(1)求橢圓
的方程;
(2)設(shè)
是橢圓
的上頂點,過點
分別作直線
交橢圓
于
兩點,設(shè)這兩條直線的斜率分別為
,且
,證明:直線
過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在坐標(biāo)原點,焦點在
軸上的橢圓,離心率為
且過點
,過定點
的動直線與該橢圓相交于
、
兩點.
(1)若線段
中點的橫坐標(biāo)是
,求直線
的方程;
(2)在
軸上是否存在點
,使
為常數(shù)?若存在,求出點
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】脫貧是政府關(guān)注民生的重要任務(wù),了解居民的實際收入狀況就顯得尤為重要.現(xiàn)從某地區(qū)隨機抽取
個農(nóng)戶,考察每個農(nóng)戶的年收入與年積蓄的情況進(jìn)行分析,設(shè)第
個農(nóng)戶的年收入
(萬元),年積蓄
(萬元),經(jīng)過數(shù)據(jù)處理得![]()
(Ⅰ)已知家庭的年結(jié)余
對年收入
具有線性相關(guān)關(guān)系,求線性回歸方程;
(Ⅱ)若該地區(qū)的農(nóng)戶年積蓄在
萬以上,即稱該農(nóng)戶已達(dá)小康生活,請預(yù)測農(nóng)戶達(dá)到小康生活的最低年收入應(yīng)為多少萬元?
附:在
中,
其中
為樣本平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】脫貧是政府關(guān)注民生的重要任務(wù),了解居民的實際收入狀況就顯得尤為重要.現(xiàn)從某地區(qū)隨機抽取
個農(nóng)戶,考察每個農(nóng)戶的年收入與年積蓄的情況進(jìn)行分析,設(shè)第
個農(nóng)戶的年收入
(萬元),年積蓄
(萬元),經(jīng)過數(shù)據(jù)處理得![]()
(Ⅰ)已知家庭的年結(jié)余
對年收入
具有線性相關(guān)關(guān)系,求線性回歸方程;
(Ⅱ)若該地區(qū)的農(nóng)戶年積蓄在
萬以上,即稱該農(nóng)戶已達(dá)小康生活,請預(yù)測農(nóng)戶達(dá)到小康生活的最低年收入應(yīng)為多少萬元?
附:在
中,
其中
為樣本平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海州市英才中學(xué)某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了
至
月份每月
號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料(表):
日期 |
|
|
|
|
|
|
晝夜溫差 |
|
|
|
|
|
|
就診人數(shù) |
|
|
|
|
|
|
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取
組,用剩下的
組數(shù)據(jù)求線性回歸方程,再用被選取的
組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取的
組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是
月與6月的兩組數(shù)據(jù),請根據(jù)
至
月份的數(shù)據(jù),求出
關(guān)于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過
人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想.
其中回歸系數(shù)公式,
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
將圓
上每一點的縱坐標(biāo)保持不變,橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍得到曲線
.
(1)寫出曲線
的參數(shù)方程;
(2)以坐標(biāo)原點為極點,
軸正半軸為極軸坐標(biāo)建立極坐標(biāo)系,已知直線
的極坐標(biāo)方程為
,若
分別為曲線
和直線
上的一點,求
的最近距離.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com