已知圓
,若橢圓
的右頂點為圓
的圓心,離心率為
.
(1)求橢圓
的方程;
(2)若存在直線
,使得直線
與橢圓
分別交于
兩點,與圓
分別交于
兩點,點
在線段
上,且
,求圓
的半徑
的取值范圍.
(1)
;(2)
.
解析試題分析:(1)圓的圓心已知,可求出橢圓方程中的
,又橢圓離心率知道根據(jù)
可得
,故可求出橢圓方程;(2)設(shè)出
兩點坐標(biāo),聯(lián)立橢圓方程,用弦長公式將
表示成
的函數(shù),再將
表示成
的函數(shù),根據(jù)
和基本不等式求解.
試題解析:(1)設(shè)橢圓的焦距為2c,因為![]()
所以橢圓的方程為
。
(2)設(shè)
,
聯(lián)立方程得![]()
所以![]()
則![]()
又點
到直線
的距離
,則![]()
顯然,若點
也在線段
上,則由對稱性可知,直線
就是y軸,與已知矛盾,所以要使
,只要
,所以![]()
當(dāng)
時,
.
當(dāng)
時,
3,
又顯然
,所以
。
綜上,圓
的半徑
的取值范圍是
.
考點:橢圓和直線綜合、點到直線的距離公式、弦長公式、基本不等式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在坐標(biāo)原點,短軸長為4,且有一個焦點與拋物線
的焦點重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知經(jīng)過定點M(2,0)且斜率不為0的直線
交橢圓C于A、B兩點,試問在x軸上是否另存在一個定點P使得
始終平分
?若存在,求出
點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的中心在坐標(biāo)原點,焦點在
軸上,橢圓
上的點到焦點距離的最大值為
,最小值為
.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線
與橢圓交于不同的兩點
、
,且線段
的垂直平分線過定點
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線
:
和⊙
:
,過拋物線
上一點
作兩條直線與⊙
相切于
、
兩點,分別交拋物線為E、F兩點,圓心點
到拋物線準(zhǔn)線的距離為
.![]()
(1)求拋物線
的方程;
(2)當(dāng)
的角平分線垂直
軸時,求直線
的斜率;
(3)若直線
在
軸上的截距為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
矩形
的中心在坐標(biāo)原點,邊
與
軸平行,
=8,
=6.
分別是矩形四條邊的中點,
是線段
的四等分點,
是線段
的四等分點.設(shè)直線
與
,
與
,
與
的交點依次為
.![]()
(1)以
為長軸,以
為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點
都在(1)中的橢圓Q上,請以點L為例,給出證明(即證明點L在橢圓Q上).
(3)設(shè)線段
的
(
等分點從左向右依次為
,線段
的
等分點從上向下依次為
,那么直線
與哪條直線的交點一定在橢圓Q上?(寫出結(jié)果即可,此問不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,F(xiàn)1,F(xiàn)2分別是橢圓C:
+
=1(a>b>0)的左、右焦點,A是橢圓C的頂點,B是直線AF2與橢圓C的另一個交點,∠F1AF2=60°![]()
(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40
,求a,b的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系
上取兩個定點
,再取兩個動點
且
.
(I)求直線
與
交點的軌跡
的方程;
(II)已知
,設(shè)直線:
與(I)中的軌跡
交于
、
兩點,直線
、
的傾斜角分別為
且
,求證:直線過定點,并求該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
知橢圓
的離心率為
,定點
,橢圓短軸的端點是
,且
.
(1)求橢圓
的方程;
(2)設(shè)過點
且斜率不為0的直線交橢圓
于
兩點.試問
軸上是否存在異于
的定點
,使
平分
?若存在,求出點
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com