【題目】已知a為常數(shù),函數(shù)
有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,則有( )
A.
B.![]()
C.
D.![]()
【答案】A
【解析】
求導(dǎo)f′(x)=x﹣aex,將問(wèn)題轉(zhuǎn)化為
有兩根為x1,x2,設(shè)
,利用導(dǎo)數(shù)法研究其圖象利用數(shù)形結(jié)合法求解.
依題意:f′(x)=x﹣aex,則f′(x)=0的兩根為x1,x2,即
的兩根為x1,x2,
設(shè)
,則
,令g′(x)=0,解得x=1,
∴g(x)在(﹣∞,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,函數(shù)g(x)的圖象如下,
![]()
由圖可知,0<x1<1,x2>1,
當(dāng)x∈(﹣∞,x1)∪(x2,+∞)時(shí),
,則f′(x)<0,f(x)單調(diào)遞減,
當(dāng)x∈(x1,x2)時(shí),
,則f′(x)>0,f(x)單調(diào)遞增,
∴f(x)極小值
,又x1∈(0,1),
故
,
f(x)極大值
,又x2∈(1,+∞),
故
.
故選:A.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位年會(huì)進(jìn)行抽獎(jiǎng)活動(dòng),在抽獎(jiǎng)箱里裝有
張印有“一等獎(jiǎng)”的卡片,
張印
有“二等獎(jiǎng)”的卡片, 3張印有“新年快樂(lè)”的卡片,抽中“一等獎(jiǎng)”獲獎(jiǎng)
元, 抽中“二等獎(jiǎng)”獲獎(jiǎng)
元,抽中“新年快樂(lè)”無(wú)獎(jiǎng)金.
(1)單位員工小張參加抽獎(jiǎng)活動(dòng),每次隨機(jī)抽取一張卡片,抽取后不放回.假如小張一定要將所有獲獎(jiǎng)卡片全部抽完才停止. 記
表示“小張恰好抽獎(jiǎng)
次停止活動(dòng)”,求
的值;
(2)若單位員工小王參加抽獎(jiǎng)活動(dòng),一次隨機(jī)抽取
張卡片.
①
記
表示“小王參加抽獎(jiǎng)活動(dòng)中獎(jiǎng)”,求
的值;
②設(shè)
表示“小王參加抽獎(jiǎng)活動(dòng)所獲獎(jiǎng)金數(shù)(單位:元)”,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在統(tǒng)計(jì)學(xué)中,同比增長(zhǎng)率一般是指和去年同期相比較的增長(zhǎng)率,環(huán)比增長(zhǎng)率一般是指和前一時(shí)期相比較的增長(zhǎng)率.2020年2月29日人民網(wǎng)發(fā)布了我國(guó)2019年國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)圖表,根據(jù)2019年居民消費(fèi)價(jià)格月度漲跌幅度統(tǒng)計(jì)折線(xiàn)圖,下列說(shuō)法正確的是( )
![]()
A.2019年我國(guó)居民每月消費(fèi)價(jià)格與2018年同期相比有漲有跌
B.2019年我國(guó)居民每月消費(fèi)價(jià)格中2月消費(fèi)價(jià)格最高
C.2019年我國(guó)居民每月消費(fèi)價(jià)格逐月遞增
D.2019年我國(guó)居民每月消費(fèi)價(jià)格3月份較2月份有所下降
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線(xiàn)
的焦點(diǎn)為
,準(zhǔn)線(xiàn)為
,
為過(guò)焦點(diǎn)
且垂直于
軸的拋物線(xiàn)
的弦,已知以
為直徑的圓經(jīng)過(guò)點(diǎn)
.
(1)求
的值及該圓的方程;
(2)設(shè)
為
上任意一點(diǎn),過(guò)點(diǎn)
作
的切線(xiàn),切點(diǎn)為
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=axlnx﹣x2﹣ax+1(a∈R)在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)設(shè)兩個(gè)極值點(diǎn)分別為x1,x2,x1<x2,證明:f(x1)+f(x2)<2﹣x12+x22.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了貫徹落實(shí)黨中央對(duì)新冠肺炎疫情防控工作的部署和要求,堅(jiān)決防范疫情向校園蔓延,切實(shí)保障廣大師生身體健康和生命的安全,教育主管部門(mén)決定通過(guò)電視頻道、網(wǎng)絡(luò)平臺(tái)等多種方式實(shí)施線(xiàn)上教育教學(xué)工作.為了了解學(xué)生和家長(zhǎng)對(duì)網(wǎng)課授課方式的滿(mǎn)意度,從經(jīng)濟(jì)不發(fā)達(dá)的A城市和經(jīng)濟(jì)發(fā)達(dá)的B城市分別隨機(jī)調(diào)查了20個(gè)用戶(hù),得到了一個(gè)用戶(hù)滿(mǎn)意度評(píng)分的樣本,并繪制出莖葉圖如下:
![]()
若評(píng)分不低于80分,則認(rèn)為該用戶(hù)對(duì)此授課方式“認(rèn)可”,否則認(rèn)為該用戶(hù)對(duì)此授課方式“不認(rèn)可”.以該樣本中A,B城市的用戶(hù)對(duì)此授課方式“認(rèn)可”的頻率分別作為A,B城市用戶(hù)對(duì)此授課方式“認(rèn)可”的概率.現(xiàn)從A城市和B城市的所有用戶(hù)中分別隨機(jī)抽取2個(gè)用戶(hù),用
表示這4個(gè)用戶(hù)中對(duì)此授課方式“認(rèn)可”的用戶(hù)個(gè)數(shù),則
__________;用
表示從A城市隨機(jī)抽取2個(gè)用戶(hù)中對(duì)此授課方式“認(rèn)可”的用戶(hù)個(gè)數(shù),則
的數(shù)學(xué)期望為_________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列
中前兩項(xiàng)
給定,若對(duì)于每個(gè)正整數(shù)
,均存在正整數(shù)
(
)使得
,則稱(chēng)數(shù)列
為“
數(shù)列”.
(1)若數(shù)列
為
的等比數(shù)列,當(dāng)
時(shí),試問(wèn):
與
是否相等,并說(shuō)明數(shù)列
是否為“
數(shù)列”;
(2)討論首項(xiàng)為
、公差為
的等差數(shù)列
是否為“
數(shù)列”,并說(shuō)明理由;
(3)已知數(shù)列
為“
數(shù)列”,且
,記
,
,其中正整數(shù)
, 對(duì)于每個(gè)正整數(shù)
,當(dāng)正整數(shù)
分別取1、2、
、
時(shí)
的最大值記為
、最小值記為
. 設(shè)
,當(dāng)正整數(shù)
滿(mǎn)足
時(shí),比較
與
的大小,并求出
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
(I)討論函數(shù)
的單調(diào)性;
(II)當(dāng)
時(shí),證明
(其中e為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com