分析 (1)聯(lián)立直線l與直線y=-x+5,求出方程組的解得到圓心C坐標(biāo),可得圓C的方程;
(2)根據(jù)A坐標(biāo)設(shè)出切線的方程,由圓心到切線的距離等于圓的半徑,列出關(guān)于k的方程,求出方程的解得到k的值,確定出切線方程即可;
(3)設(shè)M(x,y),由MA=2MO,利用兩點(diǎn)間的距離公式列出關(guān)系式,整理后得到點(diǎn)M的軌跡為以(0,-1)為圓心,2為半徑的圓,可記為圓D,由M在圓C上,得到圓C與圓D相交或相切,根據(jù)兩圓的半徑長(zhǎng),得出兩圓心間的距離范圍,利用兩點(diǎn)間的距離公式列出不等式,求出不等式的解集,即可得到a的范圍.
解答 解:(1)由$\left\{\begin{array}{l}{y=2x-4}\\{y=-x+5}\end{array}\right.$…(1分) 得圓心C為(3,2),…(2分)
∵圓C的半徑為,∴圓C的方程為:(x-3)2+(y-2)2=1…(4分)
(2)由題意知切線的斜率一定存在,…(5分)(
設(shè)所求圓C的切線方程為y=kx+3,即kx-y+3=0…(6分)
∴$\frac{|3k-2+3|}{\sqrt{{k}^{2}+1}}$=1…(7分)
∴2k(4k+3)=0
∴k=0或者k=-$\frac{3}{4}$…(8分)
∴所求圓C的切線方程為:y=3或y=-$\frac{3}{4}$x+3,即y=3或者3x+4y-12=0…(9分)
(3)設(shè)M為(x,y),由$\sqrt{{x}^{2}+(y-3)^{2}}$=$\sqrt{{x}^{2}+{y}^{2}}$…(11分)
整理得直線m:y=$\frac{3}{2}$…(12分)
∴點(diǎn)M應(yīng)該既在圓C上又在直線m上,即:圓C和直線m有公共點(diǎn)
∴|2a-4-$\frac{3}{2}$|≤1,∴$\frac{9}{4}$≤a≤$\frac{13}{4}$…(13分)
綜上所述,a的取值范圍為:[$\frac{9}{4}$,$\frac{13}{4}$]…(14分)
點(diǎn)評(píng) 此題考查了圓的切線方程,點(diǎn)到直線的距離公式,以及圓與圓的位置關(guān)系的判定,涉及的知識(shí)有:兩直線的交點(diǎn)坐標(biāo),直線的點(diǎn)斜式方程,兩點(diǎn)間的距離公式,圓的標(biāo)準(zhǔn)方程,是一道綜合性較強(qiáng)的試題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-1,3) | B. | (-1,0) | C. | (0,2) | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com