分析 由不等式與方程的關(guān)系可知$\left\{\begin{array}{l}{\sqrt{4}=4a+\frac{3}{2}}\\{\sqrt=ab+\frac{3}{2}}\end{array}\right.$,從而解得.
解答 解:∵$\sqrt{x}$>ax+$\frac{3}{2}$解集為(4,b),
∴$\left\{\begin{array}{l}{\sqrt{4}=4a+\frac{3}{2}}\\{\sqrt=ab+\frac{3}{2}}\end{array}\right.$,
解得,a=$\frac{1}{8}$,b=36,
故ab=$\frac{1}{8}$×36=$\frac{9}{2}$,
故答案為:$\frac{9}{2}$.
點(diǎn)評(píng) 本題考查了不等式與方程的關(guān)系應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{\sqrt{ab}}{2}$<$\frac{1}{a}$+$\frac{1}$ | B. | ab≤$\frac{{a}^{2}+^{2}}{2}$ | C. | ab≤($\frac{a+b}{2}$)2 | D. | ($\frac{a+b}{2}$)2≤$\frac{{a}^{2}+^{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com